Refine
Year of publication
Document Type
- Article (45)
Has Fulltext
- yes (45)
Is part of the Bibliography
- no (45)
Keywords
- CIK cells (4)
- children (4)
- immunotherapy (4)
- NK cells (3)
- allogeneic stem cell transplantation (3)
- cytokine-induced killer cells (3)
- immune reconstitution (3)
- rhabdomyosarcoma (3)
- Ataxia-telangiectasia (2)
- Immunotherapy (2)
Institute
- Medizin (45)
- Georg-Speyer-Haus (2)
- Pharmazie (1)
Patients with ataxia-telangiectasia (A-T) suffer from progressive cerebellar ataxia, immunodeficiency, respiratory failure, and cancer susceptibility. From a clinical point of view, A-T patients with IgA deficiency show more symptoms and may have a poorer prognosis. In this study, we analyzed mortality and immunity data of 659 A-T patients with regard to IgA deficiency collected from the European Society for Immunodeficiencies (ESID) registry and from 66 patients with classical A-T who attended at the Frankfurt Goethe-University between 2012 and 2018. We studied peripheral B- and T-cell subsets and T-cell repertoire of the Frankfurt cohort and survival rates of all A-T patients in the ESID registry. Patients with A-T have significant alterations in their lymphocyte phenotypes. All subsets (CD3, CD4, CD8, CD19, CD4/CD45RA, and CD8/CD45RA) were significantly diminished compared to standard values. Patients with IgA deficiency (n = 35) had significantly lower lymphocyte counts compared to A-T patients without IgA deficiency (n = 31) due to a further decrease of naïve CD4 T-cells, central memory CD4 cells, and regulatory T-cells. Although both patient groups showed affected TCR-ß repertoires compared to controls, no differences could be detected between patients with and without IgA deficiency. Overall survival of patients with IgA deficiency was significantly diminished. For the first time, our data show that patients with IgA deficiency have significantly lower lymphocyte counts and subsets, which are accompanied with reduced survival, compared to A-T patients without IgA deficiency. IgA, a simple surrogate marker, is indicating the poorest prognosis for classical A-T patients. Both non-interventional clinical trials were registered at clinicaltrials.gov 2012 (Susceptibility to infections in ataxia-telangiectasia; NCT02345135) and 2017 (Susceptibility to Infections, tumor risk and liver disease in patients with ataxia-telangiectasia; NCT03357978)
Introduction: The German PID-NET registry was founded in 2009, serving as the first national registry of patients with primary immunodeficiencies (PID) in Germany. It is part of the European Society for Immunodeficiencies (ESID) registry. The primary purpose of the registry is to gather data on the epidemiology, diagnostic delay, diagnosis, and treatment of PIDs.
Methods: Clinical and laboratory data was collected from 2,453 patients from 36 German PID centres in an online registry. Data was analysed with the software Stata® and Excel.
Results: The minimum prevalence of PID in Germany is 2.72 per 100,000 inhabitants. Among patients aged 1–25, there was a clear predominance of males. The median age of living patients ranged between 7 and 40 years, depending on the respective PID. Predominantly antibody disorders were the most prevalent group with 57% of all 2,453 PID patients (including 728 CVID patients). A gene defect was identified in 36% of patients. Familial cases were observed in 21% of patients. The age of onset for presenting symptoms ranged from birth to late adulthood (range 0–88 years). Presenting symptoms comprised infections (74%) and immune dysregulation (22%). Ninety-three patients were diagnosed without prior clinical symptoms. Regarding the general and clinical diagnostic delay, no PID had undergone a slight decrease within the last decade. However, both, SCID and hyper IgE- syndrome showed a substantial improvement in shortening the time between onset of symptoms and genetic diagnosis. Regarding treatment, 49% of all patients received immunoglobulin G (IgG) substitution (70%—subcutaneous; 29%—intravenous; 1%—unknown). Three-hundred patients underwent at least one hematopoietic stem cell transplantation (HSCT). Five patients had gene therapy.
Conclusion: The German PID-NET registry is a precious tool for physicians, researchers, the pharmaceutical industry, politicians, and ultimately the patients, for whom the outcomes will eventually lead to a more timely diagnosis and better treatment.
GATA2 deficiency is a heterogeneous multi-system disorder characterized by a high risk of developing myelodysplastic syndrome (MDS) and myeloid leukemia. We analyzed the outcome of 65 patients reported to the registry of the European Working Group (EWOG) of MDS in childhood carrying a germline GATA2 mutation (GATA2mut) who had undergone hematopoietic stem cell transplantation (HSCT). At 5 years the probability of overall survival and disease-free survival (DFS) was 75% and 70%, respectively. Non-relapse mortality and relapse equally contributed to treatment failure. There was no evidence of increased incidence of graft-versus-host-disease or excessive rates of infections or organ toxicities. Advanced disease and monosomy 7 (−7) were associated with worse outcome. Patients with refractory cytopenia of childhood (RCC) and normal karyotype showed an excellent outcome (DFS 90%) compared to RCC and −7 (DFS 67%). Comparing outcome of GATA2mut with GATA2wt patients, there was no difference in DFS in patients with RCC and normal karyotype. The same was true for patients with −7 across morphological subtypes. We demonstrate that HSCT outcome is independent of GATA2 germline mutations in pediatric MDS suggesting the application of standard MDS algorithms and protocols. Our data support considering HSCT early in the course of GATA2 deficiency in young individuals.
(1) Background: Refractory acute graft-versus-host disease (R-aGvHD) remains a leading cause of death after allogeneic stem cell transplantation. Survival rates of 15% after four years are currently achieved; deaths are only in part due to aGvHD itself, but mostly due to adverse effects of R-aGvHD treatment with immunosuppressive agents as these predispose patients to opportunistic infections and loss of graft-versus-leukemia surveillance resulting in relapse. Mesenchymal stromal cells (MSC) from different tissues and those generated by various protocols have been proposed as a remedy for R-aGvHD but the enthusiasm raised by initial reports has not been ubiquitously reproduced.
(2) Methods: We previously reported on a unique MSC product, which was generated from pooled bone marrow mononuclear cells of multiple third-party donors. The products showed dose-to-dose equipotency and greater immunosuppressive capacity than individually expanded MSCs from the same donors. This product, MSC-FFM, has entered clinical routine in Germany where it is licensed with a national hospital exemption authorization. We previously reported satisfying initial clinical outcomes, which we are now updating. The data were collected in our post-approval pharmacovigilance program, i.e., this is not a clinical study and the data is high-level and non-monitored.
(3) Results: Follow-up for 92 recipients of MSC-FFM was reported, 88 with GvHD ≥°III, one-third only steroid-refractory and two-thirds therapy resistant (refractory to steroids plus ≥2 additional lines of treatment). A median of three doses of MSC-FFM was administered without apparent toxicity. Overall response rates were 82% and 81% at the first and last evaluation, respectively. At six months, the estimated overall survival was 64%, while the cumulative incidence of death from underlying disease was 3%.
(4) Conclusions: MSC-FFM promises to be a safe and efficient treatment for severe R-aGvHD.
A record number of 39 209 HSCT in 34 809 patients (14 950 allogeneic (43%) and 19 859 autologous (57%)) were reported by 658 centers in 48 countries to the 2013 survey. Trends include: more growth in allogeneic than in autologous HSCT, increasing use of sibling and unrelated donors and a pronounced increase in haploidentical family donors when compared with cord blood donors for those patients without a matched related or unrelated donor. Main indications were leukemias, 11 190 (32%; 96% allogeneic); lymphoid neoplasias, 19 958 (57%; 11% allogeneic); solid tumors, 1543 (4%; 4% allogeneic); and nonmalignant disorders, 1975 (6%; 91% allogeneic). In patients without a matched sibling or unrelated donor, alternative donors are used. Since 2010 there has been a marked increase of 96% in the number of transplants performed from haploidentical relatives (802 in 2010 to 1571 in 2013), whereas the number of unrelated cord blood transplants has slightly decreased (789 in 2010 to 666 in 2013). The use of donor type varies greatly throughout Europe.
Severe acute graft versus host disease (GvHD) is a life-threatening complication after allogeneic hematopoietic stem cell transplantation. Human mesenchymal stromal cells (MSCs) play an important role in endogenous tissue repair and possess strong immune-modulatory properties making them a promising tool for the treatment of steroid-refractory GvHD. To date, a few reports exist on the use of MSCs in treatment of GvHD in children indicating that children tend to respond better than adults, albeit with heterogeneous results. We here present a review of the literature and the clinical course of two instructive pediatric patients with acute steroid-refractory GvHD after haploidentical stem cell transplantation, which exemplify the beneficial effects of third-party transplanted MSCs in treatment of acute steroid-refractory GvHD. Moreover, we provide a meta-analysis of clinical studies addressing the outcome of patients with steroid-refractory GvHD and treatment with MSCs in adults and in children (n = 183; 122 adults, 61 children). Our meta-analysis demonstrates that the overall response-rate is high (73.8%) and confirms, for the first time, that children indeed respond better to treatment of GvHD with MSCs than adults (complete response 57.4% vs. 45.1%, respectively). These data emphasize the significance of this therapeutic approach especially in children and indicate that future prospective studies are needed to assess the reasons for the observed differential response-rates in pediatric and adult patients. Additional file 1: MSCs expansion and release criteria.his file contains a detailed description of the MSCs expansion and release criteria for Case A and Case B.
Background: Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is performed mainly in patients with high-risk or advanced hematologic malignancies and congenital or acquired aplastic anemias. In the context of the significant risk of graft failure after allo-HSCT from alternative donors and the risk of relapse in recipients transplanted for malignancy, the precise monitoring of posttransplant hematopoietic chimerism is of utmost interest. Useful molecular methods for chimerism quantification after allogeneic transplantation, aimed at distinguishing precisely between donor's and recipient's cells, are PCR-based analyses of polymorphic DNA markers. Such analyses can be performed regardless of donor's and recipient's sex. Additionally, in patients after sex-mismatched allo-HSCT, fluorescent in situ hybridization (FISH) can be applied. Methods: We compared different techniques for analysis of posttransplant chimerism, namely FISH and PCR-based molecular methods with automated detection of fluorescent products in an ALFExpress DNA Sequencer (Pharmacia) or ABI 310 Genetic Analyzer (PE). We used Spearman correlation test. Results: We have found high correlation between results obtained from the PCR/ALF Express and PCR/ABI 310 Genetic Analyzer. Lower, but still positive correlations were found between results of FISH technique and results obtained using automated DNA sizing technology. Conclusions: All the methods applied enable a rapid and accurate detection of post-HSCT chimerism.
Rapid immune reconstitution (IR) following stem cell transplantation (SCT) is essential for a favorable outcome. The optimization of graft composition should not only enable a sufficient IR but also improve graft vs. leukemia/tumor effects, overcome infectious complications and, finally, improve patient survival. Especially in haploidentical SCT, the optimization of graft composition is controversial. Therefore, we analyzed the influence of graft manipulation on IR in 40 patients with acute leukemia in remission. We examined the cell recovery post haploidentical SCT in patients receiving a CD34+-selected or CD3/CD19-depleted graft, considering the applied conditioning regimen. We used joint model analysis for overall survival (OS) and analyzed the dynamics of age-adjusted leukocytes; lymphocytes; monocytes; CD3+, CD3+CD4+, and CD3+CD8+ T cells; natural killer (NK) cells; and B cells over the course of time after SCT. Lymphocytes, NK cells, and B cells expanded more rapidly after SCT with CD34+-selected grafts (P = 0.036, P = 0.002, and P < 0.001, respectively). Contrarily, CD3+CD4+ helper T cells recovered delayer in the CD34 selected group (P = 0.026). Furthermore, reduced intensity conditioning facilitated faster immune recovery of lymphocytes and T cells and their subsets (P < 0.001). However, the immune recovery for NK cells and B cells was comparable for patients who received reduced-intensity or full preparative regimens. Dynamics of all cell types had a significant influence on OS, which did not differ between patients receiving CD34+-selected and those receiving CD3/CD19-depleted grafts. In conclusion, cell reconstitution dynamics showed complex diversity with regard to the graft manufacturing procedure and conditioning regimen.
In an ongoing clinical phase I/II study, 16 pediatric patients suffering from high risk leukemia/tumors received highly purified donor natural killer (NK) cell immunotherapy (NK-DLI) at day (+3) +40 and +100 post haploidentical stem cell transplantation. However, literature about the influence of NK-DLI on recipient's immune system is scarce. Here we present concomitant results of a noninvasive in vivo monitoring approach of recipient's peripheral blood (PB) cells after transfer of either unstimulated (NK-DLI(unstim)) or IL-2 (1000 U/ml, 9–14 days) activated NK cells (NK-DLI(IL-2 stim)) along with their ex vivo secreted cytokine/chemokines. We performed phenotypical and functional characterizations of the NK-DLIs, detailed flow cytometric analyses of various PB cells and comprehensive cytokine/chemokine arrays before and after NK-DLI. Patients of both groups were comparable with regard to remission status, immune reconstitution, donor chimerism, KIR mismatching, stem cell and NK-DLI dose. Only after NK-DLI(IL-2 stim) was a rapid, almost complete loss of CD56(bright)CD16(dim/−) immune regulatory and CD56(dim)CD16(+) cytotoxic NK cells, monocytes, dendritic cells and eosinophils from PB circulation seen 10 min after infusion, while neutrophils significantly increased. The reduction of NK cells was due to both, a decrease in patients' own CD69(−) NCR(low)CD62L(+) NK cells as well as to a diminishing of the transferred cells from the NK-DLI(IL-2 stim) with the CD56(bright)CD16(+/−)CD69(+)NCR(high)CD62L(−) phenotype. All cell counts recovered within the next 24 h. Transfer of NK-DLI(IL-2 stim) translated into significantly increased levels of various cytokines/chemokines (i.e. IFN-γ, IL-6, MIP-1β) in patients' PB. Those remained stable for at least 1 h, presumably leading to endothelial activation, leukocyte adhesion and/or extravasation. In contrast, NK-DLI(unstim) did not cause any of the observed effects. In conclusion, we assume that the adoptive transfer of NK-DLI(IL-2 stim) under the influence of ex vivo and in vivo secreted cytokines/chemokines may promote NK cell trafficking and therefore might enhance efficacy of immunotherapy.
Natural killer (NK) cells play an important role following allogeneic hematopoietic stem cell transplantation (HSCT) exerting graft-versus-leukemia/tumor effect and mediating pathogen-specific immunity. Although NK cells are the first donor-derived lymphocytes reconstituting post-HSCT, their distribution of CD56++CD16− (CD56bright), CD56++CD16+ (CD56intermediate=int), and CD56+CD16++ (CD56dim) NK cells is explicitly divergent from healthy adults, but to some extent comparable to the NK cell development in early childhood. The proportion of CD56bright/CD56int/CD56dim changed from 15/8/78% in early childhood to 6/4/90% in adults, respectively. Within this study, we first compared the NK cell reconstitution post-HSCT to reference values of NK cell subpopulations of healthy children. Afterward, we investigated the reconstitution of NK cell subpopulations post-HSCT in correlation to acute graft versus host disease (aGvHD) and chronic graft versus host disease (cGvHD) as well as to viral infections. Interestingly, after a HSCT follow-up phase of 12 months, the distribution of NK cell subpopulations largely matched the 50th percentile of the reference range for healthy individuals. Patients suffering from aGvHD and cGvHD showed a delayed reconstitution of NK cells. Remarkably, within the first 2 months post-HSCT, patients suffering from aGvHD had significantly lower levels of CD56bright NK cells compared to patients without viral infection or without graft versus host disease (GvHD). Therefore, the amount of CD56bright NK cells might serve as an early prognostic factor for GvHD development. Furthermore, a prolonged and elevated peak in CD56int NK cells seemed to be characteristic for the chronification of GvHD. In context of viral infection, a slightly lower CD56 and CD16 receptor expression followed by a considerable reduction in the absolute CD56dim NK cell numbers combined with reoccurrence of CD56int NK cells was observed. Our results suggest that a precise analysis of the reconstitution of NK cell subpopulations post-HSCT might indicate the occurrence of undesired events post-HSCT such as severe aGvHD.values