Refine
Year of publication
Has Fulltext
- yes (17)
Is part of the Bibliography
- no (17)
Keywords
- Antiretroviral therapy (1)
- Antiretrovirals (1)
- Cirrhosis (1)
- Genetic testing (1)
- HIV (1)
- HIV-1 (1)
- Hepatitis C virus (1)
- Liver cirrhosis (1)
- Liver diseases (1)
- Liver transplantation (1)
Institute
- Geowissenschaften (10)
- Medizin (3)
During SPURT (Spurenstofftransport in der Tropopausenregion, trace gas transport in the tropopause region) we performed measurements of a wide range of trace gases with different lifetimes and sink/source characteristics in the northern hemispheric upper troposphere (UT) and lowermost stratosphere (LMS). A large number of in-situ instruments were deployed on board a Learjet 35A, flying at altitudes up to 13.7 km, at times reaching to nearly 380 K potential temperature. Eight measurement campaigns (consisting of a total of 36 flights), distributed over all seasons and typically covering latitudes between 35° N and 75° N in the European longitude sector (10° W–20° E), were performed. Here we present an overview of the project, describing the instrumentation, the encountered meteorological situations during the campaigns and the data set available from SPURT. Measurements were obtained for N2O, CH4, CO, CO2, CFC12, H2, SF6, NO, NOy, O3 and H2O. We illustrate the strength of this new data set by showing mean distributions of the mixing ratios of selected trace gases, using a potential temperature – equivalent latitude coordinate system. The observations reveal that the LMS is most stratospheric in character during spring, with the highest mixing ratios of O3 and NOy and the lowest mixing ratios of N2O and SF6. The lowest mixing ratios of NOy and O3 are observed during autumn, together with the highest mixing ratios of N2O and SF6 indicating a strong tropospheric influence. For H2O, however, the maximum concentrations in the LMS are found during summer, suggesting unique (temperature- and convection-controlled) conditions for this molecule during transport across the tropopause. The SPURT data set is presently the most accurate and complete data set for many trace species in the LMS, and its main value is the simultaneous measurement of a suite of trace gases having different lifetimes and physical-chemical histories. It is thus very well suited for studies of atmospheric transport, for model validation, and for investigations of seasonal changes in the UT/LMS, as demonstrated in accompanying and elsewhere published studies.
Objectives: The aim of this multicenter retrospective study was to investigate safety and efficacy of direct acting antiviral (DAA) treatment in the rare subgroup of patients with HCV/HIV-coinfection and advanced liver cirrhosis on the liver transplant waiting list or after liver transplantation, respectively.
Methods: When contacting 54 German liver centers (including all 23 German liver transplant centers), 12 HCV/HIV-coinfected patients on antiretroviral combination therapy were reported having received additional DAA therapy while being on the waiting list for liver transplantation (patient characteristics: Child-Pugh A (n = 6), B (n = 5), C (n = 1); MELD range 7–21; HCC (n = 2); HCV genotype 1a (n = 8), 1b (n = 2), 4 (n = 2)). Furthermore, 2 HCV/HIV-coinfected patients were denoted having received DAA therapy after liver transplantation (characteristics: HCV genotype 1a (n = 1), 4 (n = 1)).
Results: Applied DAA regimens were SOF/DAC (n = 7), SOF/LDV/RBV (n = 3), SOF/RBV (n = 3), PTV/r/OBV/DSV (n = 1), or PTV/r/OBV/DSV/RBV (n = 1), respectively. All patients achieved SVR 12, in the end. In one patient, HCV relapse occurred after 24 weeks of SOF/DAC therapy; subsequent treatment with 12 weeks PTV/r/OBV/DSV achieved SVR 12. One patient underwent liver transplantation while on DAA treatment. Analysis of liver function revealed either stable parameters or even significant improvement during DAA therapy and in follow-up. MELD scores were found to improve in 9/13 therapies in patients on the waiting list for liver transplantation; in only 2 patients a moderate increase of MELD scores persisted at the end of follow-up.
Conclusion: DAA treatment was safe and highly effective in this nation-wide cohort of patients with HCV/HIV-coinfection awaiting liver transplantation or being transplanted.
Introduction: Hip fracture surgery is associated with high in-hospital and 30-day mortality rates and serious adverse patient outcomes. Evidence from randomised controlled trials regarding effectiveness of spinal versus general anaesthesia on patient-centred outcomes after hip fracture surgery is sparse.
Methods and analysis: The iHOPE study is a pragmatic national, multicentre, randomised controlled, open-label clinical trial with a two-arm parallel group design. In total, 1032 patients with hip fracture (>65 years) will be randomised in an intended 1:1 allocation ratio to receive spinal anaesthesia (n=516) or general anaesthesia (n=516). Outcome assessment will occur in a blinded manner after hospital discharge and inhospital. The primary endpoint will be assessed by telephone interview and comprises the time to the first occurring event of the binary composite outcome of all-cause mortality or new-onset serious cardiac and pulmonary complications within 30 postoperative days. In-hospital secondary endpoints, assessed via in-person interviews and medical record review, include mortality, perioperative adverse events, delirium, satisfaction, walking independently, length of hospital stay and discharge destination. Telephone interviews will be performed for long-term endpoints (all-cause mortality, independence in walking, chronic pain, ability to return home cognitive function and overall health and disability) at postoperative day 30±3, 180±45 and 365±60.
Ethics and dissemination: iHOPE has been approved by the leading Ethics Committee of the Medical Faculty of the RWTH Aachen University on 14 March 2018 (EK 022/18). Approval from all other involved local Ethical Committees was subsequently requested and obtained. Study started in April 2018 with a total recruitment period of 24 months. iHOPE will be disseminated via presentations at national and international scientific meetings or conferences and publication in peer-reviewed international scientific journals.
Trial registration number: DRKS00013644; Pre-results
During SPURT (Spurenstofftransport in der Tropopausenregion, trace gas transport in the tropopause region) we performed measurements of a wide range of trace gases with different lifetimes and sink/source characteristics in the northern hemispheric upper troposphere (UT) and lowermost stratosphere (LMS). A large number of in-situ instruments were deployed on board a Learjet 35A, flying at altitudes up to 13.7 km, at times reaching to nearly 380 K potential temperature. Eight measurement campaigns (consisting of a total of 36 flights), distributed over all seasons and typically covering latitudes between 35° N and 75° N in the European longitude sector (10° W–20° E), were performed. Here we present an overview of the project, describing the instrumentation, the encountered meteorological situations during the campaigns and the data set available from SPURT. Measurements were obtained for N2O, CH4, CO, CO2, CFC12, H2, SF6, NO, NOy, O3 and H2O. We illustrate the strength of this new data set by showing mean distributions of the mixing ratios of selected trace gases, using a potential temperature – equivalent latitude coordinate system. The observations reveal that the LMS is most stratospheric in character during spring, with the highest mixing ratios of O3 and NOy and the lowest mixing ratios of N2O and SF6. The lowest mixing ratios of NOy and O3 are observed during autumn, together with the highest mixing ratios of N2O and SF6 indicating a strong tropospheric influence. For H2O, however, the maximum concentrations in the LMS are found during summer, suggesting unique (temperature- and convection-controlled) conditions for this molecule during transport across the tropopause. The SPURT data set is presently the most accurate and complete data set for many trace species in the LMS, and its main value is the simultaneous measurement of a suite of trace gases having different lifetimes and physical-chemical histories. It is thus very well suited for studies of atmospheric transport, for model validation, and for investigations of seasonal changes in the UT/LMS, as demonstrated in accompanying and elsewhere published studies.
Significant reductions in stratospheric ozone occur inside the polar vortices each spring when chlorine radicals produced by heterogeneous reactions on cold particle surfaces in winter destroy ozone mainly in two catalytic cycles, the ClO dimer cycle and the ClO/BrO cycle. Chlorofluorocarbons (CFCs), which are responsible for most of the chlorine currently present in the stratosphere, have been banned by the Montreal Protocol and its amendments, and the ozone layer is predicted to recover to 1980 levels within the next few decades. During the same period, however, climate change is expected to alter the temperature, circulation patterns and chemical composition in the stratosphere, and possible geo-engineering ventures to mitigate climate change may lead to additional changes. To realistically predict the response of the ozone layer to such influences requires the correct representation of all relevant processes. The European project RECONCILE has comprehensively addressed remaining questions in the context of polar ozone depletion, with the objective to quantify the rates of some of the most relevant, yet still uncertain physical and chemical processes. To this end RECONCILE used a broad approach of laboratory experiments, two field missions in the Arctic winter 2009/10 employing the high altitude research aircraft M55-Geophysica and an extensive match ozone sonde campaign, as well as microphysical and chemical transport modelling and data assimilation. Some of the main outcomes of RECONCILE are as follows: (1) vortex meteorology: the 2009/10 Arctic winter was unusually cold at stratospheric levels during the six-week period from mid-December 2009 until the end of January 2010, with reduced transport and mixing across the polar vortex edge; polar vortex stability and how it is influenced by dynamic processes in the troposphere has led to unprecedented, synoptic-scale stratospheric regions with temperatures below the frost point; in these regions stratospheric ice clouds have been observed, extending over >106km2 during more than 3 weeks. (2) Particle microphysics: heterogeneous nucleation of nitric acid trihydrate (NAT) particles in the absence of ice has been unambiguously demonstrated; conversely, the synoptic scale ice clouds also appear to nucleate heterogeneously; a variety of possible heterogeneous nuclei has been characterised by chemical analysis of the non-volatile fraction of the background aerosol; substantial formation of solid particles and denitrification via their sedimentation has been observed and model parameterizations have been improved. (3) Chemistry: strong evidence has been found for significant chlorine activation not only on polar stratospheric clouds (PSCs) but also on cold binary aerosol; laboratory experiments and field data on the ClOOCl photolysis rate and other kinetic parameters have been shown to be consistent with an adequate degree of certainty; no evidence has been found that would support the existence of yet unknown chemical mechanisms making a significant contribution to polar ozone loss. (4) Global modelling: results from process studies have been implemented in a prognostic chemistry climate model (CCM); simulations with improved parameterisations of processes relevant for polar ozone depletion are evaluated against satellite data and other long term records using data assimilation and detrended fluctuation analysis. Finally, measurements and process studies within RECONCILE were also applied to the winter 2010/11, when special meteorological conditions led to the highest chemical ozone loss ever observed in the Arctic. In addition to quantifying the 2010/11 ozone loss and to understand its causes including possible connections to climate change, its impacts were addressed, such as changes in surface ultraviolet (UV) radiation in the densely populated northern mid-latitudes.
The international research project RECONCILE has addressed central questions regarding polar ozone depletion, with the objective to quantify some of the most relevant yet still uncertain physical and chemical processes and thereby improve prognostic modelling capabilities to realistically predict the response of the ozone layer to climate change. This overview paper outlines the scope and the general approach of RECONCILE, and it provides a summary of observations and modelling in 2010 and 2011 that have generated an in many respects unprecedented dataset to study processes in the Arctic winter stratosphere. Principally, it summarises important outcomes of RECONCILE including (i) better constraints and enhanced consistency on the set of parameters governing catalytic ozone destruction cycles, (ii) a better understanding of the role of cold binary aerosols in heterogeneous chlorine activation, (iii) an improved scheme of polar stratospheric cloud (PSC) processes that includes heterogeneous nucleation of nitric acid trihydrate (NAT) and ice on non-volatile background aerosol leading to better model parameterisations with respect to denitrification, and (iv) long transient simulations with a chemistry-climate model (CCM) updated based on the results of RECONCILE that better reproduce past ozone trends in Antarctica and are deemed to produce more reliable predictions of future ozone trends. The process studies and the global simulations conducted in RECONCILE show that in the Arctic, ozone depletion uncertainties in the chemical and microphysical processes are now clearly smaller than the sensitivity to dynamic variability.