Refine
Year of publication
Document Type
- Article (17)
- Preprint (6)
- Conference Proceeding (2)
Language
- English (25)
Has Fulltext
- yes (25)
Is part of the Bibliography
- no (25)
Keywords
- Hippocampus (2)
- Synaptic transmission (2)
- quantum biology (2)
- APP processing (1)
- Alzheimer (1)
- Autism Spectrum disorder (1)
- Backpropagating action potential (1)
- Biological sciences (1)
- Biophysical models (1)
- Compartmental modeling (1)
Introduction: Neuronal death and subsequent denervation of target areas are hallmarks of many neurological disorders. Denervated neurons lose part of their dendritic tree, and are considered "atrophic", i.e. pathologically altered and damaged. The functional consequences of this phenomenon are poorly understood.
Results: Using computational modelling of 3D-reconstructed granule cells we show that denervation-induced dendritic atrophy also subserves homeostatic functions: By shortening their dendritic tree, granule cells compensate for the loss of inputs by a precise adjustment of excitability. As a consequence, surviving afferents are able to activate the cells, thereby allowing information to flow again through the denervated area. In addition, action potentials backpropagating from the soma to the synapses are enhanced specifically in reorganized portions of the dendritic arbor, resulting in their increased synaptic plasticity. These two observations generalize to any given dendritic tree undergoing structural changes.
Conclusions: Structural homeostatic plasticity, i.e. homeostatic dendritic remodeling, is operating in long-term denervated neurons to achieve functional homeostasis.
The nervous system probably cannot display macroscopic quantum (i.e. classically impossible) behaviours such as quantum entanglement, superposition or tunnelling (Koch and Hepp, Nature 440:611, 2006). However, in contrast to this quantum "mysticism" there is an alternative way in which quantum events might influence the brain activity. The nervous system is a nonlinear system with many feedback loops at every level of its structural hierarchy. A conventional wisdom is that in macroscopic objects the quantum fluctuations are self-averaging and thus not important. Nevertheless this intuition might be misleading in the case of nonlinear complex systems. Because of a high sensitivity to initial conditions, in chaotic systems the microscopic fluctuations may be amplified upward and thereby affect the system’s output. In this way stochastic quantum dynamics might sometimes alter the outcome of neuronal computations, not by generating classically impossible solutions, but by influencing the selection of many possible solutions (Satinover, Quantum Brain, Wiley & Sons, 2001). I am going to discuss recent theoretical proposals and experimental findings in quantum mechanics, complexity theory and computational neuroscience suggesting that biological evolution is able to take advantage of quantum-computational speed-up. I predict that the future research on quantum complex systems will provide us with novel interesting insights that might be relevant also for neurobiology and neurophilosophy.
Modeling the effects of neuronal morphology on dendritic chloride diffusion and GABAergic inhibition
(2014)
Poster presentation at the Twenty Third Annual Computational Neuroscience Meeting: CNS*2014 Québec City, Canada. 26-31 July 2014.
Gamma-aminobutyric acid receptors (GABAARs) are ligand-gated chloride (Cl−) channels which mediate the majority of inhibitory neurotransmission in the CNS. Spatiotemporal changes of intracellular Cl− concentration alter the concentration gradient for Cl− across the neuronal membrane and thus affect the current flow through GABAARs and the efficacy of GABAergic inhibition. However, the impact of complex neuronal morphology on Cl− diffusion and the redistribution of intracellular Cl− is not well understood. Recently, computational models for Cl− diffusion and GABAAR-mediated inhibition in realistic neuronal morphologies became available [1-3]. Here we have used computational models of morphologically complex dendrites to test the effects of spines on Cl− diffusion. In all dendritic morphologies tested, spines slowed down longitudinal Cl− diffusion along dendrites and decreased the amount and spatial spread of synaptically evoked Cl− changes. Spine densities of 2-10 spines/µm decreased the longitudinal diffusion coefficient of Cl− to 80-30% of its value in smooth dendrites, respectively. These results suggest that spines are able to limit short-term ionic plasticity [4] at dendritic GABAergic synapses.
The nervous system is a non-linear dynamical complex system with many feedback loops. A conventional wisdom is that in the brain the quantum fluctuations are self-averaging and thus functionally negligible. However, this intuition might be misleading in the case of non-linear complex systems. Because of an extreme sensitivity to initial conditions, in complex systems the microscopic fluctuations may be amplified and thereby affect the system’s behavior. In this way quantum dynamics might influence neuronal computations. Accumulating evidence in non-neuronal systems indicates that biological evolution is able to exploit quantum stochasticity. The recent rise of quantum biology as an emerging field at the border between quantum physics and the life sciences suggests that quantum events could play a non-trivial role also in neuronal cells. Direct experimental evidence for this is still missing but future research should address the possibility that quantum events contribute to an extremely high complexity, variability and computational power of neuronal dynamics.
Poster presentation: Twenty Second Annual Computational Neuroscience Meeting: CNS*2013. Paris, France. 13-18 July 2013.
Neuronal death and subsequent denervation of target areas is a major feature of several neurological conditions such as brain trauma, ischemia or neurodegeneration. The denervation-induced axonal loss results in reorganization of the dendritic tree of denervated neurons. Dendritic reorganization of denervated neurons has been previously studied using entorhinal cortex lesion (ECL).
ECL leads to shortening and loss of dendritic segments in the denervated outer molecular layer of the dentate gyrus [1]. However, the functional importance of these long-term dendritic alterations is not yet understood and their impact on neuronal electrical properties remains unclear. Therefore, in this study we analyzed what happens to the electrotonic structure and excitability of dentate granule cells after denervation-induced alterations of their dendritic morphology, assuming all other parameters remain equal.
To perform comparative electrotonic analysis we used computer simulations in anatomically and biophysically realistic compartmental models of 3D-reconstructed healthy and denervated granule cells. Our results show that somatofugal and somatopetal voltage attenuation due to passive cable properties was strongly reduced in denervated granule cells. In line with these predictions, the attenuation of simulated backpropagating action potentials and forward propagating EPSPs was significantly reduced in dendrites of denervated neurons. In addition, simulations of somatic and dendritic frequency-current (f-I) curves revealed increased excitability in deafferentated granule cells.
Taken together, our results indicate that unless counterbalanced by a compensatory adjustment of passive and/or active membrane properties, the plastic remodeling of dendrites following lesion of entorhinal cortex inputs to granule cells will boost their electrotonic compactness and excitability.
Neuroligin-3 (Nlgn3), a neuronal adhesion protein implicated in autism spectrum disorder (ASD), is expressed at excitatory and inhibitory postsynapses and hence may regulate neuronal excitation/inhibition balance. To test this hypothesis, we recorded field excitatory postsynaptic potentials (fEPSPs) in the dentate gyrus of Nlgn3 knockout (KO) and wild-type mice. Synaptic transmission evoked by perforant path stimulation was reduced in KO mice, but coupling of the fEPSP to the population spike was increased, suggesting a compensatory change in granule cell excitability. These findings closely resemble those in neuroligin-1 (Nlgn1) KO mice and could be partially explained by the reduction in Nlgn1 levels we observed in hippocampal synaptosomes from Nlgn3 KO mice. However, unlike Nlgn1, Nlgn3 is not necessary for long-term potentiation. We conclude that while Nlgn1 and Nlgn3 have distinct functions, both are required for intact synaptic transmission in the mouse dentate gyrus. Our results indicate that interactions between neuroligins may play an important role in regulating synaptic transmission and that ASD-related neuroligin mutations may also affect the synaptic availability of other neuroligins.
Background: Amyloid precursor protein (APP) processing is central to Alzheimer’s disease (AD) etiology. As early cognitive alterations in AD are strongly correlated to abnormal information processing due to increasing synaptic impairment, it is crucial to characterize how peptides generated through APP cleavage modulate synapse function. We previously described a novel APP processing pathway producing η-secretase-derived peptides (Aη) and revealed that Aη–α, the longest form of Aη produced by η-secretase and α-secretase cleavage, impaired hippocampal long-term potentiation (LTP) ex vivo and neuronal activity in vivo.
Methods: With the intention of going beyond this initial observation, we performed a comprehensive analysis to further characterize the effects of both Aη-α and the shorter Aη-β peptide on hippocampus function using ex vivo field electrophysiology, in vivo multiphoton calcium imaging, and in vivo electrophysiology.
Results: We demonstrate that both synthetic peptides acutely impair LTP at low nanomolar concentrations ex vivo and reveal the N-terminus to be a primary site of activity. We further show that Aη-β, like Aη–α, inhibits neuronal activity in vivo and provide confirmation of LTP impairment by Aη–α in vivo.
Conclusions: These results provide novel insights into the functional role of the recently discovered η-secretase-derived products and suggest that Aη peptides represent important, pathophysiologically relevant, modulators of hippocampal network activity, with profound implications for APP-targeting therapeutic strategies in AD.
Modeling long-term neuronal dynamics may require running long-lasting simulations. Such simulations are computationally expensive, and therefore it is advantageous to use simplified models that sufficiently reproduce the real neuronal properties. Reducing the complexity of the neuronal dendritic tree is one option. Therefore, we have developed a new reduced-morphology model of the rat CA1 pyramidal cell which retains major dendritic branch classes. To validate our model with experimental data, we used HippoUnit, a recently established standardized test suite for CA1 pyramidal cell models. The HippoUnit allowed us to systematically evaluate the somatic and dendritic properties of the model and compare them to models publicly available in the ModelDB database. Our model reproduced (1) somatic spiking properties, (2) somatic depolarization block, (3) EPSP attenuation, (4) action potential backpropagation, and (5) synaptic integration at oblique dendrites of CA1 neurons. The overall performance of the model in these tests achieved higher biological accuracy compared to other tested models. We conclude that, due to its realistic biophysics and low morphological complexity, our model captures key physiological features of CA1 pyramidal neurons and shortens computational time, respectively. Thus, the validated reduced-morphology model can be used for computationally demanding simulations as a substitute for more complex models.
The impact of GABAergic transmission on neuronal excitability depends on the Cl--gradient across membranes. However, the Cl--fluxes through GABAA receptors alter the intracellular Cl- concentration ([Cl-]i) and in turn attenuate GABAergic responses, a process termed ionic plasticity. Recently it has been shown that coincident glutamatergic inputs significantly affect ionic plasticity. Yet how the [Cl-]i changes depend on the properties of glutamatergic inputs and their spatiotemporal relation to GABAergic stimuli is unknown. To investigate this issue, we used compartmental biophysical models of Cl- dynamics simulating either a simple ball-and-stick topology or a reconstructed CA3 neuron. These computational experiments demonstrated that glutamatergic co-stimulation enhances GABA receptor-mediated Cl- influx at low and attenuates or reverses the Cl- efflux at high initial [Cl-]i. The size of glutamatergic influence on GABAergic Cl--fluxes depends on the conductance, decay kinetics, and localization of glutamatergic inputs. Surprisingly, the glutamatergic shift in GABAergic Cl--fluxes is invariant to latencies between GABAergic and glutamatergic inputs over a substantial interval. In agreement with experimental data, simulations in a reconstructed CA3 pyramidal neuron with physiological patterns of correlated activity revealed that coincident glutamatergic synaptic inputs contribute significantly to the activity-dependent [Cl-]i changes. Whereas the influence of spatial correlation between distributed glutamatergic and GABAergic inputs was negligible, their temporal correlation played a significant role. In summary, our results demonstrate that glutamatergic co-stimulation had a substantial impact on ionic plasticity of GABAergic responses, enhancing the attenuation of GABAergic inhibition in the mature nervous systems, but suppressing GABAergic [Cl-]i changes in the immature brain. Therefore, glutamatergic shift in GABAergic Cl--fluxes should be considered as a relevant factor of short-term plasticity.
Cl(-) plays a crucial role in neuronal function and synaptic inhibition. However, the impact of neuronal morphology on the diffusion and redistribution of intracellular Cl(-) is not well understood. The role of spines in Cl(-) diffusion along dendritic trees has not been addressed so far. Because measuring fast and spatially restricted Cl(-) changes within dendrites is not yet technically possible, we used computational approaches to predict the effects of spines on Cl(-) dynamics in morphologically complex dendrites. In all morphologies tested, including dendrites imaged by super-resolution STED microscopy in live brain tissue, spines slowed down longitudinal Cl(-) diffusion along dendrites. This effect was robust and could be observed in both deterministic as well as stochastic simulations. Cl(-) extrusion altered Cl(-) diffusion to a much lesser extent than the presence of spines. The spine-dependent slowing of Cl(-) diffusion affected the amount and spatial spread of changes in the GABA reversal potential thereby altering homosynaptic as well as heterosynaptic short-term ionic plasticity at GABAergic synapses in dendrites. Altogether, our results suggest a fundamental role of dendritic spines in shaping Cl(-) diffusion, which could be of relevance in the context of pathological conditions where spine densities and neural excitability are perturbed.