Refine
Year of publication
- 2005 (1)
Document Type
- Doctoral Thesis (1)
Language
- English (1)
Has Fulltext
- yes (1)
Is part of the Bibliography
- no (1)
Keywords
Institute
Biophysical investigation of the ligand-induced assembling of the human type I interferon receptor
(2005)
Type I interferons (IFNs) elicit antiviral, antiproliferative and immunmodulatory responses through binding to a shared receptor consisting of the transmembrane proteins ifnar1 and ifnar2. Differential signaling by different interferons – in particular IFNalpha´s and IFNbeta – suggest different modes of receptor engagement. In this work either single ligand-receptor interactions or the formation of the extracellular part of a signaling complex were investigated referring to thermodynamics, kinetics, stoichiometry and structural organization. Initially an expression and purification strategy for the extracellular domain of ifnar1 (ifnar1-EC) using Sf9 insect cells yielding in mg amounts of glycosylated protein was established. Using reflectometric interference spectroscopy (RIfS) the interactions between IFNalpha2/beta and ifnar1-EC and ifnar2-EC was studied in order to understand the individual energetic contributions within the ternary complex. For IFNalpha2 a Kd of 5 µM for the interaction with ifnar1-EC was determined. Substantially tighter binding of IFNbeta with both ifnar2-EC and ifnar1-EC compared to IFNalpha2 was observed. For neither IFNalpha2 nor IFNbeta stabilization of the complex with ifnar1-EC in presence of soluble ifnar2-EC was detectable. In addition, no direct interaction between ifnar2 and ifnar1 was could be shown. Thus, stem-stem interactions between the extracellular domains of ifnar1 and ifnar2 do not seem to play a role for ternary complex formation. Furthermore, ligand-induced cross-talk between ifnar1-EC and ifnar2-EC being tethered onto solid-supported, fluid lipid bilayers was investigated by RIfS and total internal reflection fluorescence spectroscopy. A very stable binding of IFNalpha2 at high receptor surface concentrations was observed with an apparent kd approximately 200-times lower than for ifnar2-EC alone. This apparent kd was strongly dependent on the surface concentration of the receptor components, suggesting kinetic rather than static stabilization, which was corroborated by competition experiments. These results indicate that signaling is activated by transient cross-talk between ifnar1 and ifnar2, which is by several orders of magnitude more efficiently engaged by IFNbeta than by IFNalpha2. With respect to differential recognition of different IFNs ifnar1-EC was dissected into sub-fragments containing different of the four Ig-like domains. The appropriate folding and glycosylation of these proteins, also purified in mg amounts were confirmed by SDS-PAGE, size exclusion chromatography and CD-spectroscopy. Surprisingly, only one construct containing all three N-terminal Ig-like domains was active in terms of ligand binding, indicating that these domains were required. Competitive binding of IFNalpha2 and IFNbeta to both this fragment and ifnar1-EC was demonstrated. Cellular binding assays with different fragments, however, highlight the key role of the membrane-proximal Ig-like domain for the formation of an in situ IFN-receptor complex and the ensuing signal activation. Even substitution with Ig-like domains from homologous cytokine receptors did not restore high-affinity ligand binding. Receptor assembling analysis on supported lipid bilayer revealed that appropriate orientation of the receptor is required, which is controlled by the membrane-proximal Ig-domain. All results indicate that differential signalling is encoded by the efficiency of signalling complex formation, which is controlled by the binding affinity of IFNs to the extracellular domains of ifnar1 and 2.