Refine
Language
- English (6)
Has Fulltext
- yes (6)
Is part of the Bibliography
- no (6)
Keywords
- Alleles (1)
- Bipolar disorder (1)
- Breast cancer (1)
- Cancer detection and diagnosis (1)
- Consortia (1)
- Depression (1)
- Etiology (1)
- Genetic causes of cancer (1)
- Genetic testing (1)
- Genome-wide association studies (1)
Institute
- Medizin (6)
Genetic generalised epilepsy (GGE) is the most common form of genetic epilepsy, accounting for 20% of all epilepsies. Genomic copy number variations (CNVs) constitute important genetic risk factors of common GGE syndromes. In our present genome-wide burden analysis, large (≥ 400 kb) and rare (< 1%) autosomal microdeletions with high calling confidence (≥ 200 markers) were assessed by the Affymetrix SNP 6.0 array in European case-control cohorts of 1,366 GGE patients and 5,234 ancestry-matched controls. We aimed to: 1) assess the microdeletion burden in common GGE syndromes, 2) estimate the relative contribution of recurrent microdeletions at genomic rearrangement hotspots and non-recurrent microdeletions, and 3) identify potential candidate genes for GGE. We found a significant excess of microdeletions in 7.3% of GGE patients compared to 4.0% in controls (P = 1.8 x 10-7; OR = 1.9). Recurrent microdeletions at seven known genomic hotspots accounted for 36.9% of all microdeletions identified in the GGE cohort and showed a 7.5-fold increased burden (P = 2.6 x 10-17) relative to controls. Microdeletions affecting either a gene previously implicated in neurodevelopmental disorders (P = 8.0 x 10-18, OR = 4.6) or an evolutionarily conserved brain-expressed gene related to autism spectrum disorder (P = 1.3 x 10-12, OR = 4.1) were significantly enriched in the GGE patients. Microdeletions found only in GGE patients harboured a high proportion of genes previously associated with epilepsy and neuropsychiatric disorders (NRXN1, RBFOX1, PCDH7, KCNA2, EPM2A, RORB, PLCB1). Our results demonstrate that the significantly increased burden of large and rare microdeletions in GGE patients is largely confined to recurrent hotspot microdeletions and microdeletions affecting neurodevelopmental genes, suggesting a strong impact of fundamental neurodevelopmental processes in the pathogenesis of common GGE syndromes.
Molecular cause and functional impact of altered synaptic lipid signaling due to a prg‐1 gene SNP
(2015)
Loss of plasticity-related gene 1 (PRG-1), which regulates synaptic phospholipid signaling, leads to hyperexcitability via increased glutamate release altering excitation/inhibition (E/I) balance in cortical networks. A recently reported SNP in prg-1 (R345T/mutPRG-1) affects ~5 million European and US citizens in a monoallelic variant. Our studies show that this mutation leads to a loss-of-PRG-1 function at the synapse due to its inability to control lysophosphatidic acid (LPA) levels via a cellular uptake mechanism which appears to depend on proper glycosylation altered by this SNP. PRG-1(+/-) mice, which are animal correlates of human PRG-1(+/mut) carriers, showed an altered cortical network function and stress-related behavioral changes indicating altered resilience against psychiatric disorders. These could be reversed by modulation of phospholipid signaling via pharmacological inhibition of the LPA-synthesizing molecule autotaxin. In line, EEG recordings in a human population-based cohort revealed an E/I balance shift in monoallelic mutPRG-1 carriers and an impaired sensory gating, which is regarded as an endophenotype of stress-related mental disorders. Intervention into bioactive lipid signaling is thus a promising strategy to interfere with glutamate-dependent symptoms in psychiatric diseases.
Background: Microdeletions are known to confer risk to epilepsy, particularly at genomic rearrangement ‘hotspot’ loci. However, microdeletion burden not overlapping these regions or within different epilepsy subtypes has not been ascertained.
Objective: To decipher the role of microdeletions outside hotspots loci and risk assessment by epilepsy subtype.
Methods: We assessed the burden, frequency and genomic content of rare, large microdeletions found in a previously published cohort of 1366 patients with genetic generalised epilepsy (GGE) in addition to two sets of additional unpublished genome-wide microdeletions found in 281 patients with rolandic epilepsy (RE) and 807 patients with adult focal epilepsy (AFE), totalling 2454 cases. Microdeletions were assessed in a combined and subtype-specific approaches against 6746 controls.
Results: When hotspots are considered, we detected an enrichment of microdeletions in the combined epilepsy analysis (adjusted p=1.06×10−6,OR 1.89, 95% CI 1.51 to 2.35). Epilepsy subtype-specific analyses showed that hotspot microdeletions in the GGE subgroup contribute most of the overall signal (adjusted p=9.79×10−12, OR 7.45, 95% CI 4.20–13.5). Outside hotspots , microdeletions were enriched in the GGE cohort for neurodevelopmental genes (adjusted p=9.13×10−3,OR 2.85, 95% CI 1.62–4.94). No additional signal was observed for RE and AFE. Still, gene-content analysis identified known (NRXN1, RBFOX1 and PCDH7) and novel (LOC102723362) candidate genes across epilepsy subtypes that were not deleted in controls.
Conclusions: Our results show a heterogeneous effect of recurrent and non-recurrent microdeletions as part of the genetic architecture of GGE and a minor contribution in the aetiology of RE and AFE.
Background: Identification of families at risk for ovarian cancer offers the opportunity to consider prophylactic surgery thus reducing ovarian cancer mortality. So far, identification of potentially affected families in Germany was solely performed via family history and numbers of affected family members with breast or ovarian cancer. However, neither the prevalence of deleterious variants in BRCA1/2 in ovarian cancer in Germany nor the reliability of family history as trigger for genetic counselling has ever been evaluated.
Methods: Prospective counseling and germline testing of consecutive patients with primary diagnosis or with platinum-sensitive relapse of an invasive epithelial ovarian cancer. Testing included 25 candidate and established risk genes. Among these 25 genes, 16 genes (ATM, BRCA1, BRCA2, CDH1, CHEK2, MLH1, MSH2, MSH6, NBN, PMS2, PTEN, PALB2, RAD51C, RAD51D, STK11, TP53) were defined as established cancer risk genes. A positive family history was defined as at least one relative with breast cancer or ovarian cancer or breast cancer in personal history.
Results: In total, we analyzed 523 patients: 281 patients with primary diagnosis of ovarian cancer and 242 patients with relapsed disease. Median age at primary diagnosis was 58 years (range 16–93) and 406 patients (77.6%) had a high-grade serous ovarian cancer. In total, 27.9% of the patients showed at least one deleterious variant in all 25 investigated genes and 26.4% in the defined 16 risk genes. Deleterious variants were most prevalent in the BRCA1 (15.5%), BRCA2 (5.5%), RAD51C (2.5%) and PALB2 (1.1%) genes. The prevalence of deleterious variants did not differ significantly between patients at primary diagnosis and relapse. The prevalence of deleterious variants in BRCA1/2 (and in all 16 risk genes) in patients <60 years was 30.2% (33.2%) versus 10.6% (18.9%) in patients ≥60 years. Family history was positive in 43% of all patients. Patients with a positive family history had a prevalence of deleterious variants of 31.6% (36.0%) versus 11.4% (17.6%) and histologic subtype of high grade serous ovarian cancer versus other showed a prevalence of deleterious variants of 23.2% (29.1%) and 10.2% (14.8%), respectively. Testing only for BRCA1/2 would miss in our series more than 5% of the patients with a deleterious variant in established risk genes.
Conclusions: 26.4% of all patients harbor at least one deleterious variant in established risk genes. The threshold of 10% mutation rate which is accepted for reimbursement by health care providers in Germany was observed in all subgroups analyzed and neither age at primary diagnosis nor histo-type or family history sufficiently enough could identify a subgroup not eligible for genetic counselling and testing. Genetic testing should therefore be offered to every patient with invasive epithelial ovarian cancer and limiting testing to BRCA1/2 seems to be not sufficient.
Bipolar disorder (BD) is a major psychiatric illness affecting around 1% of the global population. BD is characterized by recurrent manic and depressive episodes, and has an estimated heritability of around 70%. Research has identified the first BD susceptibility genes. However, the underlying pathways and regulatory networks remain largely unknown. Research suggests that the cumulative impact of common alleles with small effects explains only around 25–38% of the phenotypic variance for BD. A plausible hypothesis therefore is that rare, high penetrance variants may contribute to BD risk. The present study investigated the role of rare, nonsynonymous, and potentially functional variants via whole exome sequencing in 15 BD cases from two large, multiply affected families from Cuba. The high prevalence of BD in these pedigrees renders them promising in terms of the identification of genetic risk variants with large effect sizes. In addition, SNP array data were used to calculate polygenic risk scores for affected and unaffected family members. After correction for multiple testing, no significant increase in polygenic risk scores for common, BD-associated genetic variants was found in BD cases compared to healthy relatives. Exome sequencing identified a total of 17 rare and potentially damaging variants in 17 genes. The identified variants were shared by all investigated BD cases in the respective pedigree. The most promising variant was located in the gene SERPING1 (p.L349F), which has been reported previously as a genome-wide significant risk gene for schizophrenia. The present data suggest novel candidate genes for BD susceptibility, and may facilitate the discovery of disease-relevant pathways and regulatory networks.
Background Microdeletions are known to confer risk to epilepsy, particularly at genomic rearrangement “hotspot” loci. However, deciphering their role outside hotspots and risk assessment by epilepsy sub-type has not been conducted.
Methods We assessed the burden, frequency and genomic content of rare, large microdeletions found in a previously published cohort of 1,366 patients with Genetic Generalized Epilepsy (GGE) plus two sets of additional unpublished genome-wide microdeletions found in 281 Rolandic Epilepsy (RE) and 807 Adult Focal Epilepsy (AFE) patients, totaling 2,454 cases. These microdeletion sets were assessed in a combined analysis and in sub-type specific approaches against 6,746 ethnically matched controls.
Results When hotspots are considered, we detected an enrichment of microdeletions in the combined epilepsy analysis (adjusted-P= 2.00×10-7; OR = 1.89; 95%-CI: 1.51-2.35), where the implicated microdeletions overlapped with rarely deleted genes and those involved in neurodevelopmental processes. Sub-type specific analyses showed that hotspot deletions in the GGE subgroup contribute most of the signal (adjusted-P = 1.22×10-12; OR = 7.45; 95%-CI = 4.20-11.97). Outside hotspot loci, microdeletions were enriched in the GGE cohort for neurodevelopmental genes (adjusted-P = 4.78×10-3; OR = 2.30; 95%-CI = 1.42-3.70), whereas no additional signal was observed for RE and AFE. Still, gene content analysis was able to identify known (NRXN1, RBFOX1 and PCDH7) and novel (LOC102723362) candidate genes affected in more than one epilepsy sub-type but not in controls.
Conclusions Our results show a heterogeneous effect of recurrent and non-recurrent microdeletions as part of the genetic architecture of GGE and a minor to negligible contribution in the etiology of RE and AFE.