Refine
Year of publication
Document Type
- Article (52)
- Working Paper (5)
- Contribution to a Periodical (1)
Has Fulltext
- yes (58)
Is part of the Bibliography
- no (58)
Keywords
- climate change (6)
- Modellierung (3)
- Grundwasser (2)
- Grundwasserneubildung (2)
- Klimawandel (2)
- agriculture (2)
- global modeling (2)
- groundwater recharge (2)
- Anthropogene Klimaänderung (1)
- Antibody therapy (1)
Institute
- Geowissenschaften (42)
- Biodiversität und Klima Forschungszentrum (BiK-F) (11)
- Geowissenschaften / Geographie (8)
- Geographie (6)
- Senckenbergische Naturforschende Gesellschaft (4)
- Institut für sozial-ökologische Forschung (ISOE) (1)
- Institut für Ökologie, Evolution und Diversität (1)
- Medizin (1)
- Präsidium (1)
Within the framework of the Transboundary Waters Assessment Programme (TWAP), initiated by the Global Environment Facility (GEF), we contributed to a comprehensive baseline assessment of transboundary aquifers (TBAs) by quantifying different groundwater indicators using the global water resources and water use model WaterGAP 2.2. All indicators were computed under current (2010) and projected conditions in 2030 and 2050 for 91 selected TBAs larger than 20,000 km2 and for each nation’s share of the TBAs (TBA-CU: country unit). TBA outlines were provided by the International Groundwater Resources Assessment Centre (IGRAC). The set of indicators comprises groundwater recharge, groundwater depletion, per-capita groundwater recharge, dependency on groundwater, population density, and groundwater development stress (groundwater withdrawals to groundwater recharge). Only the latter four indicators were projected to 2030 and 2050. Current-state indicators were quantified using the Watch Forcing Data climate dataset, while projections were based on five climate scenarios that were computed by five global climate models for the high-emissions scenario RCP 8.5. Water use projections were based on the Shared Socio-economic Pathway SSP2 developed within ISI-MIP. Furthermore, two scenarios of future irrigated areas were explored. For individual water use sectors, the fraction of groundwater abstraction was assumed to remain at the current level.
According to our assessment, aquifers with the highest current groundwater depletion rates worldwide are not transboundary. Exceptions are the Neogene Aquifer System (Syria) with 53 mm/yr between 2000 and 2009 and the Indus River Plain aquifer (India) with 28 mm/yr. For current conditions, we identified 20 out of 258 TBA-CUs suffering from medium to very high groundwater development stress, which are located in the Middle East and North Africa region, in South Asia, China, and the USA. Considering projections, ensemble means of per-cent changes or percent point changes to current conditions were determined. Per-capita groundwater recharge is projected to decrease in 80-90% of all TBA-CUs until 2030/2050. Due to the strongly varying projections of the global climate models, we applied a worst-case scenario approach to define future hotspots of groundwater development stress, taking into account the strongest computed increase until either 2030 or 2050 among all scenarios and individual GCMs. Based on this approach, the number of TBA-CUs under at least medium groundwater development stress increases from 20 to 58, comprising all hotspots under current conditions. New hotspots are projected to develop mainly in Sub-Saharan Africa, China, and Mexico.
Groundwater recharge is the major limiting factor for the sustainable use of groundwater. To support water management in a globalized world, it is necessary to estimate, in a spatially resolved way, global-scale groundwater recharge. In this report, improved model estimates of diffuse groundwater recharge at the global-scale, with a spatial resolution of 0.5° by 0.5°, are presented. They are based on calculations of the global hydrological model WGHM (WaterGAP Global Hydrology Model) which, for semi-arid and arid areas of the globe, was tuned against independent point estimates of diffuse groundwater recharge. This has led to a decrease of estimated groundwater recharge under semi-arid and arid conditions as compared to the model results before tuning, and the new estimates are more similar to country level data on groundwater recharge. Using the improved model, the impact of climate change on groundwater recharge was simulated, applying two greenhouse gas emissions scenarios as interpreted by two different climate models.
Global-scale assessments of freshwater fluxes and storages by hydrological models under historic climate conditions are subject to a variety of uncertainties. Using the global hydrological model WaterGAP 2.2, we investigated the sensitivity of simulated freshwater fluxes and water storage variations to five major sources of uncertainty: climate forcing, land cover input, model structure, consideration of human water use and calibration (or no calibration). In a modelling experiment, five variants of the standard version of WaterGAP 2.2 were generated that differed from the standard version only regarding the investigated source of uncertainty. Sensitivity was analyzed by comparing water fluxes and water storage variations computed by the variants to those of the standard version, considering both global averages and grid cell values for the time period 1971–2000. The basin-specific calibration approach for WaterGAP, which forces simulated mean annual river discharge to be equal to observed values at 1319 gauging stations (representing 54% of global land area except Antarctica and Greenland), has the highest effect on modelled water fluxes and leads to the best fit of modelled to observed monthly and seasonal river discharge. Alternative state-of-the-art climate forcings rank second regarding the impact on grid cell specific fluxes and water storage variations, and their impact is ubiquitous and stronger than that of alternative land cover inputs. The diverse model refinements during the last decade lead to an improved fit to observed discharge, and affect globally averaged fluxes and storage values (the latter mainly due to modelling of groundwater depletion) but only affect a relatively small number of grid cells. Considering human water use is important for the global water storage trend (in particular in the groundwater compartment) but impacts on water fluxes are rather local and only important where water use is high. The best fit to observed time series of monthly river discharge (Nash–Sutcliffe criterion) or discharge seasonality is obtained with the standard WaterGAP 2.2 model version which is calibrated and driven by a sequence of two time series of daily observation-based climate forcings, WFD/WFDEI. Discharge computed by a calibrated model version using monthly CRU 3.2 and GPCC v6 climate input reduced the fit to observed discharge for most stations. Taking into account the investigated uncertainties of climate and land cover data, we estimate that the global 1971–2000 discharge into oceans and inland sinks is between 40 000 and 42 000 km3 yr−1. The range is mainly due differences in precipitation data that affect discharge in uncalibrated river basins. Actual evapotranspiration, with approximately 70 000 km3 yr−1, is rather unaffected by climate and land cover in global sum but differs spatially. Human water use is calculated to reduce river discharge by approximately 1000 km3 yr−1. Thus, global renewable water resources are estimated to range between 41 000 and 43 000 km3 yr−1. The climate data sets WFD (available until 2001) and WFDEI (starting in 1979) were found to be inconsistent with respect to short wave radiation data, resulting in strongly different potential evapotranspiration. Global assessments of freshwater fluxes and storages would therefore benefit from the development of a global data set of consistent daily climate forcing from 1900 to current.
Reduction of greenhouse gas (GHG) emissions to minimize climate change requires very significant societal effort. To motivate this effort, it is important to clarify the benefits of avoided emissions. To this end, we analysed the impact of four emissions scenarios on future renewable groundwater resources, which range from 1600 GtCO2 during the 21st century (RCP2.6) to 7300 GtCO2 (RCP8.5). Climate modelling uncertainty was taken into account by applying the bias-corrected output of a small ensemble of five CMIP5 global climate models (GCM) as provided by the ISI-MIP effort to the global hydrological model WaterGAP. Despite significant climate model uncertainty, the benefits of avoided emissions with respect to renewable groundwater resources (i.e. groundwater recharge (GWR)) are obvious. The percentage of projected global population (SSP2 population scenario) suffering from a significant decrease of GWR of more than 10% by the 2080s as compared to 1971–2000 decreases from 38% (GCM range 27–50%) for RCP8.5 to 24% (11–39%) for RCP2.6. The population fraction that is spared from any significant GWR change would increase from 29% to 47% if emissions were restricted to RCP2.6. Increases of GWR are more likely to occur in areas with below average population density, while GWR decreases of more than 30% affect especially (semi)arid regions, across all GCMs. Considering change of renewable groundwater resources as a function of mean global temperature (GMT) rise, the land area that is affected by GWR decreases of more than 30% and 70% increases linearly with global warming from 0 to 3 ° C. For each degree of GMT rise, an additional 4% of the global land area (except Greenland and Antarctica) is affected by a GWR decrease of more than 30%, and an additional 1% is affected by a decrease of more than 70%.
River flow regimes, including long-term average flows, seasonality, low flows, high flows and other types of flow variability, play an important role for freshwater ecosystems. Thus, climate change affects freshwater ecosystems not only by increased temperatures but also by altered river flow regimes. However, with one exception, transferable quantitative relations between flow alterations and ecological responses have not yet been derived. While discharge decreases are generally considered to be detrimental for ecosystems, the effect of future discharge increases is unclear. As a first step towards a global-scale analysis of climate change impacts on freshwater ecosystems, we quantified the impact of climate change on five ecologically relevant river flow indicators, using the global water model WaterGAP 2.1g to simulate monthly time series of river discharge with a spatial resolution of 0.5 degrees. Four climate change scenarios based on two global climate models and two greenhouse gas emissions scenarios were evaluated. We compared the impact of climate change by the 2050s to the impact of water withdrawals and dams on natural flow regimes that had occurred by 2002. Climate change was computed to alter seasonal flow regimes significantly (i.e. by more than 10%) on 90% of the global land area (excluding Greenland and Antarctica), as compared to only one quarter of the land area that had suffered from significant seasonal flow regime alterations due to dams and water withdrawals. Due to climate change, the timing of the maximum mean monthly river discharge will be shifted by at least one month on one third on the global land area, more often towards earlier months (mainly due to earlier snowmelt). Dams and withdrawals had caused comparable shifts on less than 5% of the land area only. Long-term average annual river discharge is predicted to significantly increase on one half of the land area, and to significantly decrease on one quarter. Dams and withdrawals had led to significant decreases on one sixth of the land area, and nowhere to increases. Thus, by the 2050s, climate change may have impacted ecologically relevant river flow characteristics more strongly than dams and water withdrawals have up to now. The only exception refers to the decrease of the statistical low flow Q90, with significant decreases both by past water withdrawals and future climate change on one quarter of the land area. However, dam impacts are likely underestimated by our study. Considering long-term average river discharge, only a few regions, including Spain, Italy, Iraq, Southern India, Western China, the Australian Murray Darling Basin and the High Plains Aquifer in the USA, all of them with extensive irrigation, are expected to be less affected by climate change than by past anthropogenic flow alterations. In some of these regions, climate change will exacerbate the discharge reductions, while in others climate change provides opportunities for reducing past reductions. Emissions scenario B2 leads to only slightly reduced alterations of river flow regimes as compared to scenario A2 even though emissions are much smaller. The differences in alterations resulting from the two applied climate models are larger than those resulting from the two emissions scenarios. Based on general knowledge about ecosystem responses to flow alterations and data related to flow alterations by dams and water withdrawals, we expect that the computed climate change induced river flow alterations will impact freshwater ecosystems more strongly than past anthropogenic alterations.
Floodplains play an important role in the terrestrial water cycle and are very important for biodiversity. Therefore, an improved representation of the dynamics of floodplain water flows and storage in global hydrological and land surface models is required. To support model validation, we combined monthly time series of satellite-derived inundation areas (Papa et al., 2010) with data on irrigated rice areas (Portmann et al., 2010). In this way, we obtained global-scale time series of naturally inundated areas (NIA), with monthly values of inundation extent during 1993–2004 and a spatial resolution of 0.5°. For most grid cells (0.5°×0.5°), the mean annual maximum of NIA agrees well with the static open water extent of the Global Lakes and Wetlands database (GLWD) (Lehner and Döll, 2004), but in 16% of the cells NIA is larger than GLWD. In some regions, like Northwestern Europe, NIA clearly overestimates inundated areas, probably because of confounding very wet soils with inundated areas. In other areas, such as South Asia, it is likely that NIA can help to enhance GLWD. NIA data will be very useful for developing and validating a floodplain modeling algorithm for the global hydrological model WGHM. For example, we found that monthly NIAs correlate with observed river discharges.
Long-term average groundwater recharge, which is equivalent to renewable groundwater resources, is the major limiting factor for the sustainable use of groundwater. Compared to surface water resources, groundwater resources are more protected from pollution, and their use is less restricted by seasonal and inter-annual flow variations. To support water management in a globalized world, it is necessary to estimate groundwater recharge at the global scale. Here, we present a best estimate of global-scale long-term average diffuse groundwater recharge (i.e. renewable groundwater resources) that has been calculated by the most recent version of the WaterGAP Global Hydrology Model WGHM (spatial resolution of 0.5° by 0.5°, daily time steps). The estimate was obtained using two state-of-the-art global data sets of gridded observed precipitation that we corrected for measurement errors, which also allowed to quantify the uncertainty due to these equally uncertain data sets. The standard WGHM groundwater recharge algorithm was modified for semi-arid and arid regions, based on independent estimates of diffuse groundwater recharge, which lead to an unbiased estimation of groundwater recharge in these regions. WGHM was tuned against observed long-term average river discharge at 1235 gauging stations by adjusting, individually for each basin, the partitioning of precipitation into evapotranspiration and total runoff. We estimate that global groundwater recharge was 12 666 km3/yr for the climate normal 1961–1990, i.e. 32% of total renewable water resources. In semi-arid and arid regions, mountainous regions, permafrost regions and in the Asian Monsoon region, groundwater recharge accounts for a lower fraction of total runoff, which makes these regions particularly vulnerable to seasonal and inter-annual precipitation variability and water pollution. Average per-capita renewable groundwater resources of countries vary between 8 m3/(capita yr) for Egypt to more than 1 million m3/(capita yr) for the Falkland Islands, the global average in the year 2000 being 2091 m3/(capita yr). Regarding the uncertainty of estimated groundwater resources due to the two precipitation data sets, deviation from the mean is 1.1% for the global value, and less than 1% for 50 out of the 165 countries considered, between 1 and 5% for 62, between 5 and 20% for 43 and between 20 and 80% for 10 countries. Deviations at the grid scale can be much larger, ranging between 0 and 186 mm/yr.
This paper investigates the value of observed river discharge data for global-scale hydrological modeling of a number of flow characteristics that are e.g. required for assessing water resources, flood risk and habitat alteration of aquatic ecosystems. An improved version of the WaterGAP Global Hydrology Model (WGHM) was tuned against measured discharge using either the 724-station dataset (V1) against which former model versions were tuned or an extended dataset (V2) of 1235 stations. WGHM is tuned by adjusting one model parameter (γ) that affects runoff generation from land areas in order to fit simulated and observed long-term average discharge at tuning stations. In basins where γ does not suffice to tune the model, two correction factors are applied successively: the areal correction factor corrects local runoff in a basin and the station correction factor adjusts discharge directly the gauge. Using station correction is unfavorable, as it makes discharge discontinuous at the gauge and inconsistent with runoff in the upstream basin. The study results are as follows. (1) Comparing V2 to V1, the global land area covered by tuning basins increases by 5% and the area where the model can be tuned by only adjusting γ increases by 8%. However, the area where a station correction factor (and not only an areal correction factor) has to be applied more than doubles. (2) The value of additional discharge information for representing the spatial distribution of long-term average discharge (and thus renewable water resources) with WGHM is high, particularly for river basins outside of the V1 tuning area and in regions where the refined dataset provides a significant subdivision of formerly extended tuning basins (average V2 basin size less than half the V1 basin size). If the additional discharge information were not used for tuning, simulated long-term average discharge would differ from the observed one by a factor of, on average, 1.8 in the formerly untuned basins and 1.3 in the subdivided basins. The benefits tend to be higher in semi-arid and snow-dominated regions where the model is less reliable than in humid areas and refined tuning compensates for uncertainties with regard to climate input data and for specific processes of the water cycle that cannot be represented yet by WGHM. Regarding other flow characteristics like low flow, inter-annual variability and seasonality, the deviation between simulated and observed values also decreases significantly, which, however, is mainly due to the better representation of average discharge but not of variability. (3) The choice of the optimal sub-basin size for tuning depends on the modeling purpose. While basins over 60 000 km2 are performing best, improvements in V2 model performance are strongest in small basins between 9000 and 20 000 km2, which is primarily related to a low level of V1 performance. Increasing the density of tuning stations provides a better spatial representation of discharge, but it also decreases model consistency, as almost half of the basins below 20 000 km2 require station correction.
Large-scale hydrological modelling has become increasingly wide-spread during the last decade. An annual workshop series on large-scale hydrological modelling has provided, since 1997, a forum to the German-speaking community for discussing recent developments and achievements in this research area. In this paper we present the findings from the 2007 workshop which focused on advances and visions in large-scale hydrological modelling. We identify the state of the art, difficulties and research perspectives with respect to the themes "sensitivity of model results", "integrated modelling" and "coupling of processes in hydrosphere, atmosphere and biosphere". Some achievements in large-scale hydrological modelling during the last ten years are presented together with a selection of remaining challenges for the future.