Refine
Year of publication
Language
- English (188)
Has Fulltext
- yes (188)
Is part of the Bibliography
- no (188)
Keywords
- BESIII (10)
- Branching fraction (7)
- e +-e − Experiments (6)
- QCD (3)
- Absolute branching fraction (2)
- Branching fractions (2)
- Charm Physics (2)
- Charmonium (2)
- Cross section (2)
- Electroweak Interaction (2)
Institute
- Physik (188)
- Frankfurt Institute for Advanced Studies (FIAS) (1)
- Informatik (1)
We measure the inclusive semielectronic decay branching fraction of the D+s meson. A double-tag technique is applied to e+e− annihilation data collected by the BESIII experiment at the BEPCII collider, operating in the center-of-mass energy range 4.178–4.230 GeV. We select positrons fromD+s→Xe+νe with momenta greater than 200 MeV/c and determine the laboratory momentum spectrum, accounting for the effects of detector efficiency and resolution. The total positron yield and semielectronic branching fraction are determined by extrapolating this spectrum below the momentum cutoff. We measure the D+s semielectronic branching fraction to be(6.30±0.13(stat.)±0.09(syst.)±0.04(ext.))%, showing no evidence for unobserved exclusive semielectronic modes. We combine this result with external data taken from literature to determine the ratio of the D+s and D0 semielectronic widths, Γ(D+s→Xe+νe)Γ(D0→Xe+νe)=0.790±0.016(stat.)±0.011(syst.)±0.016(ext.). Our results are consistent with and more precise than previous measurements.
The process e+e−→ϕη is studied at 22 center-of-mass energy points (√s) between 2.00 and 3.08 GeV using 715 pb−1 of data collected with the BESIII detector. The measured Born cross section of e+e−→ϕη is found to be consistent with BABAR measurements, but with improved precision. A resonant structure around 2.175 GeV is observed with a significance of 6.9σ with mass (2163.5±6.2±3.0) MeV/c2 and width (31.1+21.1−11.6±1.1) MeV, where the first uncertainties are statistical and the second are systematic.
By analyzing 6.32 fb − 1 of e+ e− annihilation data collected at the center-of-mass energies between 4.178 and 4.226 GeV with the BESIII detector, we determine the branching fraction of the leptonic decay D + s → τ + ντ, with τ+ → π + π0¯ντ, to be B D + s → τ + ν τ = (5.29 ± 0.25 stat ± 0.20 syst) %. We estimate the product of the Cabibbo-Kobayashi-Maskawa matrix element |Vcs|and the D + s decay constant f D + s to be f D + s|Vcs| = (244.8 ± 5.8 stat ± 4.8syst) MeV, using the known values of the τ + and D + s masses as well as the D + s lifetime, together with our branching fraction measurement. Combining the value of |Vcs| obtained from a global fit in the standard model and f D + s from lattice quantum chromodynamics, we obtain f D + s = (251.6 ± 5.9 stat ± 4.9syst) MeV and |Vcs| = 0.980 ± 0.023 stat ± 0.019 syst. Using the branching fraction of B D + s → μ + νμ = (5.35±0.21)×10−3, we obtain the ratio of the branching fractions B D + s → τ + ντ/B D +s → μ+νμ = 9.89±0.71, which is consistent with the standard model prediction of lepton flavor universality.
Measurements of cross section of e⁺e⁻ → pp¯π⁰ at center-of-mass energies between 4.008 and 4.600 GeV
(2017)
Based on e+e− annihilation data samples collected with the BESIII detector at the BEPCII collider at 13 center-of-mass energies from 4.008 to 4.600 GeV, measurements of the Born cross section of e+e− → pp¯π0 are performed. No significant resonant structure is observed in the measured energy dependence of the cross section. The upper limit on the Born cross section of e+e− → Y (4260) → pp¯π0 at the 90% C.L. is determined to be 0.01 pb. The upper limit on the ratio of the branching fractions B(Y (4260)→pp¯π0) B(Y (4260)→π+π− J/ψ) at the 90% C.L. is determined to be 0.02%.
Using data samples collected with the BESIII detector at the BEPCII collider at six center-of-mass energies between 4.008 and 4.600 GeV, we observe the processes e+e− → φφω and e+e− → φφφ. The Born cross sections are measured and the ratio of the cross sections σ(e+e− → φφω)/σ(e+e− → φφφ) is estimated to be 1.75 ± 0.22 ± 0.19 averaged over six energy points, where the first uncertainty is statistical and the second is systematic. The results represent first measurements of these interactions.
We report the first observation of the decay Λ+c→Σ−π+π+π0, based on data obtained in e+e− annihilations with an integrated luminosity of 567~pb−1 at s√=4.6~GeV. The data were collected with the BESIII detector at the BEPCII storage rings. The absolute branching fraction B(Λ+c→Σ−π+π+π0) is determined to be (2.11±0.33(stat.)±0.14(syst.))%. In addition, an improved measurement of B(Λ+c→Σ−π+π+) is determined as (1.81±0.17(stat.)±0.09(syst.))%.
Using 9.0 fb−1 of e+e− collision data collected at center-of-mass energies from 4.178 to 4.278 GeV with the BESIII detector at the BEPCII collider, we perform the first search for the radiative transition χc1(3872)→γψ2(3823). No χc1(3872)→γψ2(3823) signal is observed. The upper limit on the ratio of branching fractions B(χc1(3872)→γψ2(3823),ψ2(3823)→γχc1)/B(χc1(3872)→π+π−J/ψ) is set as 0.075 at the 90\% confidence level. Our result contradicts theoretical predictions under the assumption that the χc1(3872) is the pure charmonium state χc1(2P).
We study the decays of J/ψ and ψ(3686) to the final states Σ(1385)0Σ¯(1385)0 and Ξ0Ξ¯0 based on a single baryon tag method using data samples of (1310.6±7.0)×106 J/ψ and (447.9±2.9)×106 ψ(3686) events collected with the BESIII detector at the BEPCII collider. The decays to Σ(1385)0Σ¯(1385)0 are observed for the first time. The measured branching fractions of J/ψ and ψ(3686)→Ξ0Ξ¯0 are in good agreement with, and much more precise, than the previously published results. The angular parameters for these decays are also measured for the first time. The measured angular decay parameter for J/ψ→Σ(1385)0Σ¯(1385)0, α=−0.64±0.03±0.10, is found to be negative, different to the other decay processes in this measurement. In addition, the "12\% rule" and isospin symmetry in the J/ψ and ψ(3686)→ΞΞ¯ and Σ(1385)Σ¯(1385) systems are tested.
Using e+e− annihilation data corresponding to an integrated luminosity of 2.93 fb−1 taken at the center-of-mass energy s√=3.773~GeV with the BESIII detector, a joint amplitude analysis is performed on the decays D0→π+π−π+π− and D0→π+π−π0π0(non-η). The fit fractions of individual components are obtained, and large interferences among the dominant components of D0→a1(1260)π, D0→π(1300)π, D0→ρ(770)ρ(770) and D0→2(ππ)S are found in both channels. With the obtained amplitude model, the CP-even fractions of D0→π+π−π+π− and D0→π+π−π0π0(non-η) are determined to be (75.2±1.1stat.±1.5syst.)% and (68.9±1.5stat.±2.4syst.)%, respectively. The branching fractions of D0→π+π−π+π− and D0→π+π−π0π0(non-η) are measured to be (0.688±0.010stat.±0.010syst.)% and (0.951±0.025stat.±0.021syst.)%, respectively. The amplitude analysis provides an important model for binning strategy in the measurements of the strong phase parameters of D0→4π when used to determine the CKM angle γ(ϕ3) via the B−→DK− decay.
Using a data set corresponding to an integrated luminosity of 6.32 fb−1 recorded by the BESIII detector at center-of-mass energies between 4.178 and 4.226 GeV, an amplitude analysis of the decay D+s → π+π0π0 is performed, and the relative fractions and phases of different intermediate processes are determined. The absolute branching fraction of the decay D+s → π+π0π0 is measured to be (0.50 ± 0.04stat ± 0.02syst)%. Theabsolute branching fraction of the intermediate process D+s → f0(980)π+, f0(980) → π0π0 is determined to be (0.28 ± 0.04stat ± 0.04syst)%.