Refine
Document Type
- Article (4)
- Doctoral Thesis (1)
Language
- English (5)
Has Fulltext
- yes (5)
Is part of the Bibliography
- no (5)
Keywords
- transfer entropy (2)
- Climate System, Climate Models, Information theory (1)
- El Niño (1)
- Indian Ocean dipole (1)
- Odra (1)
- Poland (1)
- Vb‑cyclones (1)
- climate informatics (1)
- heavy precipitation events (1)
- information flow (1)
Institute
Often in climate system studies, linear and symmetric statistical measures are applied to quantify interactions among subsystems or variables. However, they do not allow identification of the driving and responding subsystems. Therefore, in this study, we aimed to apply asymmetric measures from information theory: the axiomatically proposed transfer entropy and the first principle-based information flow to detect and quantify climate interactions. As their estimations are challenging, we initially tested nonparametric estimators like transfer entropy (TE)-binning, TE-kernel, and TE k-nearest neighbor and parametric estimators like TE-linear and information flow (IF)-linear with idealized two-dimensional test cases along with their sensitivity on sample size. Thereafter, we experimentally applied these methods to the Lorenz-96 model and to two real climate phenomena, i.e., (1) the Indo-Pacific Ocean coupling and (2) North Atlantic Oscillation (NAO)–European air temperature coupling. As expected, the linear estimators work for linear systems but fail for strongly nonlinear systems. The TE-kernel and TE k-nearest neighbor estimators are reliable for linear and nonlinear systems. Nevertheless, the nonparametric methods are sensitive to parameter selection and sample size. Thus, this work proposes a composite use of the TE-kernel and TE k-nearest neighbor estimators along with parameter testing for consistent results. The revealed information exchange in Lorenz-96 is dominated by the slow subsystem component. For real climate phenomena, expected bidirectional information exchange between the Indian and Pacific SSTs was detected. Furthermore, expected information exchange from NAO to European air temperature was detected, but also unexpected reversal information exchange. The latter might hint to a hidden process driving both the NAO and European temperatures. Hence, the limitations, availability of time series length and the system at hand must be taken into account before drawing any conclusions from TE and IF-linear estimations.
Several past summer floods in Central Europe were associated with so-called Vb‑cyclones propagating from the Mediterranean Sea north-eastward to Central Europe. This study illustrates the usefulness of the parametric transfer entropy measure TE‑linear in investigating heavy Vb‑cyclone precipitation events in the Odra catchment (Poland). With the application of the TE‑linear approach, we confirm the impact of the Mediterranean Sea on precipitation intensification. Moreover, we also detect significant information exchange to Vb‑cyclone precipitation from evaporation over the European continent along the typical Vb‑cyclone pathway. Thus, the Mediterranean Sea could enhance the Vb‑cyclone precipitation by pre-moistening continental moisture source regions that contribute to precipitation downstream in the investigated catchments. Overall, the transfer entropy approach with the measure TE‑linear proved to be computationally effective and complementary to traditional methods such as Lagrangian and Eulerian diagnostics.
In the last decade, the Climate Limited-area Modeling Community (CLM-Community) has contributed to the Coordinated Regional Climate Downscaling Experiment (CORDEX) with an extensive set of regional climate simulations. Using several versions of the COSMO-CLM-Community model, ERA-Interim reanalysis and eight global climate models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) were dynamically downscaled with horizontal grid spacings of 0.44∘ (∼ 50 km), 0.22∘ (∼ 25 km), and 0.11∘ (∼ 12 km) over the CORDEX domains Europe, South Asia, East Asia, Australasia, and Africa. This major effort resulted in 80 regional climate simulations publicly available through the Earth System Grid Federation (ESGF) web portals for use in impact studies and climate scenario assessments. Here we review the production of these simulations and assess their results in terms of mean near-surface temperature and precipitation to aid the future design of the COSMO-CLM model simulations. It is found that a domain-specific parameter tuning is beneficial, while increasing horizontal model resolution (from 50 to 25 or 12 km grid spacing) alone does not always improve the performance of the simulation. Moreover, the COSMO-CLM performance depends on the driving data. This is generally more important than the dependence on horizontal resolution, model version, and configuration. Our results emphasize the importance of performing regional climate projections in a coordinated way, where guidance from both the global (GCM) and regional (RCM) climate modeling communities is needed to increase the reliability of the GCM–RCM modeling chain.
In the last decade, the Climate Limited-area Modeling (CLM) Community has contributed to the Coordinated Regional Climate Downscaling Experiment (CORDEX) with an extensive set of regional climate simulations. Using several versions of the COSMO-CLM community model, ERA-Interim reanalysis and eight Global Climate Models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) were dynamically downscaled with horizontal grid spacings of 0.44◦(∼50 km), 0.22◦ (∼25 km) and 0.11◦ (∼12 km) over the CORDEX domains Europe, South Asia, East Asia, Australasia and Africa. This major effort resulted in 80 regional climate simulations publicly available through the Earth System Grid Federation (ESGF) web portals for use in impact studies and climate scenario assessments. Here we review the production of these simulations and assess their results in terms of mean near-surface temperature and precipitation to aid the future design of the COSMO-CLM model simulations. It is found that a domain-specific parameter tuning is beneficial, while increasing horizontal model resolution (from 50 to 25 or 12 km grid spacing) alone does not always improve the performance of the simulation. Moreover, the COSMO-CLM performance depends on the driving data. This is generally more important than the dependence on horizontal resolution, model version and configuration. Our results emphasize the importance of performing regional climate projections in a coordinated way, where guidance from both the global (GCM) and regional (RCM) climate modelling communities is needed to increase the reliability of the GCM-RCM modelling chain.
The climate system is one of the classical examples of a complex dynamical system consisting of interacting sub-systems through mass, momentum, and energy exchange across various spatial and temporal scales. This thesis aims to detect and quantify sub-component interactions from an information exchange (IE) perspective. For this purpose, IE estimators derived from information theory are explored and applied to the available climate data obtained from observations, reanalysis, global and regional climate models. Specifically, this thesis investigates the usefulness of information theory methods for process-oriented climate model evaluation.
Firstly, methods derived from the concepts of information theory such as transfer entropy and information flow along with their linear and non-linear estimation techniques are initially tested and applied to idealized two-dimensional dynamical systems. The results revealed an expected direction and magnitude of IE providing insights into underlying dynamics. However, as expected the linear estimators are robust for linear systems but fail for non-linear systems. Though the non-linear estimators (kernel and kraskov) showed expected results for all the idealized systems, their free tuning parameters are to be tested for consistent results. Moreover, these methods are sensitive to the available time series length.
A real world example case study involving the dynamics between the Indian and Pacific oceans revealed a physically consistent bi-directional IE. However, unexpected IE was detected in the example of North Atlantic and European air temperatures indicating hidden drivers. Though IE provides insights into system dynamics, the availability of time series length and the system at hand must be carefully taken into account before inferring any possible interpretations of the results.
Quantifying the IE from El-Ni\~{n}o southern oscillation (ENSO) and Indian Ocean Dipole (IOD) to the Indian Summer Monsoon Rainfall (ISMR) with the observational and reanalysis data sets revealed that both ENSO and IOD are synergistic predictors for the inter-annual variability of the ISMR over central India i.e., the monsoon core region. Though the investigated three Global Climate Models (GCM) could not reveal the underlying IE dynamics of ENSO, IOD, and ISMR, a Regional Climate Model (RCM) simulation downscaling one of the GCMs with realistic large scale signals across the lateral boundaries showed good agreement with the observations.
Evaluating a coupled regional climate modeling system driven by two different global data sets with IE estimators revealed significant differences between the process chains linking the north-west Mediterranean sea surface temperatures, evaporation, wind speed, and the Vb-cyclone induced precipitation over Danube, Odra, and Elbe catchments in the historical period (1951-2005). Detailed investigation revealed that the north-west Mediterranean Sea in the coupled regional simulation driven by ERA-20C reanalysis corresponded to the Vb-cyclone precipitation over the three catchments while no such correspondence is noted in the EC-EARTH driven simulation. This discrepancy is attributed to the inheritance of the simulation biases from GCM into the RCM. In the future period (1965-2099), no significant changes in the processes are noted from the simulation.
Overall, this thesis used IE estimators in investigating the underlying dynamics of climate system and climate models. The estimators proved useful in providing insights into climate system dynamics assisting in a process based climate model evaluation.