Refine
Year of publication
- 2009 (1)
Document Type
- Doctoral Thesis (1)
Language
- English (1)
Has Fulltext
- yes (1)
Is part of the Bibliography
- no (1)
Institute
This thesis presents a 5.9 Å map of yeast FAS obtained by cryo-electron microscopy using single particle analysis (SPA). The EM-map has been analyzed both by quantitative and qualitative analysis to aid in understanding of the structure and dynamics of yeast FAS. This study approaches the factors limiting the resolution in EM (>20 Å) and further discusses the possibilities of achieving higher-resolutions (<10 Å) in cryo-EM by single particle analysis. Here, SPA is highlighted as a powerful tool for understanding the structure and dynamics of macro-molecular complexes at near native conditions. Though SPA has been used over the last four decades, the low-resolution range (20-30 Å) of the method has limited its use in structural biology. Over the last decade, sub nanometer resolution (<10 Å) structures solved by SPA have been reported --both in studies involving symmetric particles, such as GroEL (D7) and asymmetric particles, such as ribosomes (C1). Recently, near-atomic resolution in the range of 3.8-4.2 Å has been achieved in cases of highly symmetric icosahedral viral capsid structures as well. The yeast FAS structure (D3) presented here is one of two low symmetry structures submitted to the EM-database in a resolution range of 5-6 Å; the other being GroEL (D7). Fatty acid synthase (FAS) is the key enzyme for the biosynthesis of fatty acids in living organisms. There are two types of FAS, namely the type II FAS system in prokaryotes, consisting of a set of individual enzymes, and type I FAS found in eukaryotes as a multienzyme complex. Yeast fatty acid synthase (FAS) is a 2.6 MDa barrel-shaped multienzyme complex, which carries out cyclic synthesis of fatty acids. By electron cryomicroscopy of single particles we obtained a 3D map of yeast FAS at 5.9 Å resolution. Compared to the crystal structures of fungal FAS, the EM map reveals major differences and new features that indicate a considerably different arrangement of the complex in solution, as well as a high degree of variance inside the barrel. Distinct density regions in the reaction chambers next to each of the catalytic domains fit well with the substratebinding acyl carrier protein (ACP) domain. In each case, this resulted in the expected distance of ~18 Å from the ACP substrate binding site to the active site of the catalytic domains. The multiple, partially occupied positions of the ACP within the reaction chamber provide direct insight into the proposed substrate-shuttling mechanism of fatty acid synthesis in this large cellular machine.