Refine
Document Type
- Article (1)
- Doctoral Thesis (1)
Language
- English (2)
Has Fulltext
- yes (2)
Is part of the Bibliography
- no (2)
Keywords
- HBV filaments (1)
- HBV genotypes (1)
- HBV surface protein (1)
- Hepatitis B virus (1)
- PreS1 deletion (1)
- Virus-host Interaction (1)
- exosomes (1)
- morphogenesis (1)
Institute
The N-terminus of the hepatitis B virus (HBV) large surface protein (LHB) differs with respect to genotypes. Compared to the amino terminus of genotype (Gt)D, in GtA, GtB and GtC, an additional identical 11 amino acids (aa) are found, while GtE and GtG share another similar 10 aa. Variants of GtB and GtC affecting this N-terminal part are associated with hepatoma formation. Deletion of these amino-terminal 11 aa in GtA reduces the amount of LHBs and changes subcellular accumulation (GtA-like pattern) to a dispersed distribution (GtD-like pattern). Vice versa, the fusion of the GtA-derived N-terminal 11 aa to GtD causes a GtA-like phenotype. However, insertion of the corresponding GtE-derived 10 aa to GtD has no effect. Deletion of these 11aa decreases filament size while neither the number of released viral genomes nor virion size and infectivity are affected. A negative regulatory element (aa 2–8) and a dominant positive regulatory element (aa 9–11) affecting the amount of LHBs were identified. The fusion of this motif to eGFP revealed that the effect on protein amount and subcellular distribution is not restricted to LHBs. These data identify a novel region in the N-terminus of LHBs affecting the amount and subcellular distribution of LHBs and identify release-promoting and -inhibiting aa residues within this motive.
As one of the most widespread infectious diseases in the world, it is currently estimated that approximately 296 million people globally are chronically infected with Hepatitis B virus (HBV), the consequences of HBV infection cause more than 620,000 deaths each year. Although safe and effective HBV vaccines have reduced the incidence of new HBV infections in most countries, there are still around 1.5 million new infections each year. HBV remains a major health problem because there is no large-scale effective vaccination strategy in many countries with a high burden of disease, many people with chronic HBV infection are not receiving effective and timely treatment, and a complete cure for chronic infection is still far from being achieved.
Since its discovery, HBV has been identified as an enveloped DNA virus with a diameter of 42 nm. For efficient egress from host cells, HBV is thought to acquire the viral envelope by budding into multivesicular bodies (MVBs) and escape from infected cells via the exosome release pathway. It is clear that HBV hijacks the host vesicle system to complete self-assembly and propagation by interacting with factors that mediate exosome formation. Consequently, the overlap with exosome biogenesis, using MVBs as the release platform, raises the possibility for the release of exosomal HBV particles. Currently, virus containing exosomal vesicles have been described for several viruses. In light of this, this study explored whether intact HBV-virions wrapped in exosomes are released by HBV-producing cells.
First, this study established a robust method for efficient separation of exosomes from HBV virions by a combination of differential ultracentrifugation and iodixanol density gradient centrifugation. Fractionation of the density gradient revealed that two populations of infectious viral particles can be separated from the culture fluids of HBV-producing cells. The population present in the low-density peak co-migrates with the exosome markers. Whereas the population that appeared in the high-density fractions was the classical HBV virions, which are rcDNA-containing nucleocapsids encapsulated by the HBV envelope.
Subsequently, the characterization of this low-density population was performed, namely the highly purified exosome fraction was systematically investigated. Relying on the detergent sensitivity of the exosome membrane and the outer envelope of the HBV virus, disruption of the exosome structure by treatment with limited detergent revealed the presence of HBsAg in the exosomes. At the same time, mild and limited NP-40 treatment of highly purified exosomes and a further combination of density gradient centrifugation resulted in the stepwise release of intact HBV virions and naked capsids from the exosomes generated by HBV-producing cells. This implies the presence of intact HBV particles encapsulated by the host membrane.
The presence of exosome-encapsulated HBV particles was consequently also verified by suppressing the morphogenesis of MVBs or exosomes. Impairment of MVB- or exosome-generation with small molecule inhibitors has significantly inhibited the release of host membrane-encapsulated HBV particles as well. Likewise, silencing of exosome-related proteins caused a diminution of exosome output, which compromised the budding efficiency of wrapped HBV.
Moreover, electron microscopy images of ultra-thin sections combined with immunogold staining visualized the hidden virus in the exosomal structure. Additionally, the presence of LHBs on the surface of exosomes derived from HBV-expressing cells was also observed.
As expected, these exosomal membrane-wrapped HBV particles can spread productive infection in differentiated HepaRG cells. In HBV-susceptible cells, as LHBs on the membrane surface, this type of exosomal HBV appeared to be uptaken in an NTCP receptor-dependent manner.
Taken together these data indicate that a fraction of intact HBV virions can be released as exosomes. This reveals a so far not described release pathway for HBV. Exosomes hijacked by HBV act as a transporter impacting the dissemination of the virus.