Refine
Document Type
- Article (6)
Language
- English (6)
Has Fulltext
- yes (6)
Is part of the Bibliography
- no (6)
Keywords
- Catchment hydrological models (1)
- Global hydrological models (1)
- Hydrological droughts (1)
- ISIMIP (1)
- Model evaluation (1)
- Model validation (1)
- flood control (1)
- flow regimes (1)
- reservoir (1)
- river discharge (1)
We performed an intercomparison of river discharge regulated by dams under four meteorological forcings among five global hydrological models for a historical period by simulation. This is the first global multimodel intercomparison study on dam-regulated river flow. Although the simulations were conducted globally, the Missouri–Mississippi and Green–Colorado Rivers were chosen as case-study sites in this study. The hydrological models incorporate generic schemes of dam operation, not specific to a certain dam. We examined river discharge on a longitudinal section of river channels to investigate the effects of dams on simulated discharge, especially at the seasonal time scale. We found that the magnitude of dam regulation differed considerably among the hydrological models. The difference was attributable not only to dam operation schemes but also to the magnitude of simulated river discharge flowing into dams. That is, although a similar algorithm of dam operation schemes was incorporated in different hydrological models, the magnitude of dam regulation substantially differed among the models. Intermodel discrepancies tended to decrease toward the lower reaches of these river basins, which means model dependence is less significant toward lower reaches. These case-study results imply that, intermodel comparisons of river discharge should be made at different locations along the river's course to critically examine the performance of hydrological models because the performance can vary with the locations.
Climate change and its impacts already pose considerable challenges for societies that will further increase with global warming (IPCC, 2014a, b). Uncertainties of the climatic response to greenhouse gas emissions include the potential passing of large-scale tipping points (e.g. Lenton et al., 2008; Levermann et al., 2012; Schellnhuber, 2010) and changes in extreme meteorological events (Field et al., 2012) with complex impacts on societies (Hallegatte et al., 2013). Thus climate change mitigation is considered a necessary societal response for avoiding uncontrollable impacts (Conference of the Parties, 2010). On the other hand, large-scale climate change mitigation itself implies fundamental changes in, for example, the global energy system. The associated challenges come on top of others that derive from equally important ethical imperatives like the fulfilment of increasing food demand that may draw on the same resources. For example, ensuring food security for a growing population may require an expansion of cropland, thereby reducing natural carbon sinks or the area available for bio-energy production. So far, available studies addressing this problem have relied on individual impact models, ignoring uncertainty in crop model and biome model projections. Here, we propose a probabilistic decision framework that allows for an evaluation of agricultural management and mitigation options in a multi-impact-model setting. Based on simulations generated within the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP), we outline how cross-sectorally consistent multi-model impact simulations could be used to generate the information required for robust decision making.
Using an illustrative future land use pattern, we discuss the trade-off between potential gains in crop production and associated losses in natural carbon sinks in the new multiple crop- and biome-model setting. In addition, crop and water model simulations are combined to explore irrigation increases as one possible measure of agricultural intensification that could limit the expansion of cropland required in response to climate change and growing food demand. This example shows that current impact model uncertainties pose an important challenge to long-term mitigation planning and must not be ignored in long-term strategic decision making.
In order to achieve climate change mitigation, long-term decisions are required that must be reconciled with other societal goals that draw on the same resources. For example, ensuring food security for a growing population may require an expansion of crop land, thereby reducing natural carbon sinks or the area available for bio-energy production. Here, we show that current impact-model uncertainties pose an important challenge to long-term mitigation planning and propose a new risk-assessment and decision framework that accounts for competing interests.
Based on cross-sectorally consistent simulations generated within the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP) we discuss potential gains and limitations of additional irrigation and trade-offs of the expansion of agricultural land as two possible response measures to climate change and growing food demand. We describe an illustrative example in which the combination of both measures may close the supply demand gap while leading to a loss of approximately half of all natural carbon sinks.
We highlight current limitations of available simulations and additional steps required for a comprehensive risk assessment.
Comparing projections of future changes in runoff from hydrological and biome models in ISI-MIP
(2013)
Future changes in runoff can have important implications for water resources and flooding. In this study, runoff projections from ISI-MIP (Inter-sectoral Impact Model Intercomparison Project) simulations forced with HadGEM2-ES bias-corrected climate data under the Representative Concentration Pathway 8.5 have been analysed for differences between impact models. Projections of change from a baseline period (1981–2010) to the future (2070–2099) from 12 impacts models which contributed to the hydrological and biomes sectors of ISI-MIP were studied. The biome models differed from the hydrological models by the inclusion of CO2 impacts and most also included a dynamic vegetation distribution. The biome and hydrological models agreed on the sign of runoff change for most regions of the world. However, in West Africa, the hydrological models projected drying, and the biome models a moistening. The biome models tended to produce larger increases and smaller decreases in regionally averaged runoff than the hydrological models, although there is large inter-model spread. The timing of runoff change was similar, but there were differences in magnitude, particularly at peak runoff. The impact of vegetation distribution change was much smaller than the projected change over time, while elevated CO2 had an effect as large as the magnitude of change over time projected by some models in some regions. The effect of CO2 on runoff was not consistent across the models, with two models showing increases and two decreases. There was also more spread in projections from the runs with elevated CO2 than with constant CO2. The biome models which gave increased runoff from elevated CO2 were also those which differed most from the hydrological models. Spatially, regions with most difference between model types tended to be projected to have most effect from elevated CO2, and seasonal differences were also similar, so elevated CO2 can partly explain the differences between hydrological and biome model runoff change projections. Therefore, this shows that a range of impact models should be considered to give the full range of uncertainty in impacts studies.
Projections of future changes in runoff can have important implications for water resources and flooding. In this study, runoff projections from ISI-MIP (Inter-sectoral Impact Model Intercomparison Project) simulations forced with HadGEM2-ES bias-corrected climate data under the Representative Concentration Pathway 8.5 have been analysed. Projections of change from the baseline period (1981–2010) to the future (2070–2099) from a number of different ecosystems and hydrological models were studied. The differences between projections from the two types of model were looked at globally and regionally. Typically, across different regions the ecosystem models tended to project larger increases and smaller decreases in runoff than the hydrological models. However, the differences varied both regionally and seasonally. Sensitivity experiments were also used to investigate the contributions of varying CO2 and allowing vegetation distribution to evolve on projected changes in runoff. In two out of four models which had data available from CO2 sensitivity experiments, allowing CO2 to vary was found to increase runoff more than keeping CO2 constant, while in two models runoff decreased. This suggests more uncertainty in runoff responses to elevated CO2 than previously considered. As CO2 effects on evapotranspiration via stomatal conductance and leaf-area index are more commonly included in ecosystems models than in hydrological models, this may partially explain some of the difference between model types. Keeping the vegetation distribution static in JULES runs had much less effect on runoff projections than varying CO2, but this may be more pronounced if looked at over a longer timescale as vegetation changes may take longer to reach a new state.
Although global- and catchment-scale hydrological models are often shown to accurately simulate long-term runoff time-series, far less is known about their suitability for capturing hydrological extremes, such as droughts. Here we evaluated simulations of hydrological droughts from nine catchment scale hydrological models (CHMs) and eight global scale hydrological models (GHMs) for eight large catchments: Upper Amazon, Lena, Upper Mississippi, Upper Niger, Rhine, Tagus, Upper Yangtze and Upper Yellow. The simulations were conducted within the framework of phase 2a of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2a). We evaluated the ability of the CHMs, GHMs and their respective ensemble means (Ens-CHM and Ens-GHM) to simulate observed hydrological droughts of at least one month duration, over 31 years (1971–2001). Hydrological drought events were identified from runoff-deficits and the Standardised Runoff Index (SRI). In all catchments, the CHMs performed relatively better than the GHMs, for simulating monthly runoff-deficits. The number of drought events identified under different drought categories (i.e. SRI values of -1 to -1.49, -1.5 to -1.99, and ≤-2) varied significantly between models. All the models, as well as the two ensemble means, have limited abilities to accurately simulate drought events in all eight catchments, in terms of their occurrence and magnitude. Overall, there are opportunities to improve both CHMs and GHMs for better characterisation of hydrological droughts.