Refine
Language
- English (77)
Has Fulltext
- yes (77)
Is part of the Bibliography
- no (77)
Keywords
Institute
Dihadron angular correlations in d + Au collisions at √sNN = 200 GeV are reported as a function of the measured zero-degree calorimeter neutral energy and the forward charged hadron multiplicity in the Au-beam direction. A finite correlated yield is observed at large relative pseudorapidity (η) on the near side (i.e. relative azimuth φ ∼ 0). This correlated yield as a function of η appears to scale with the dominant, primarily jet-related, away-side (φ ∼ π) yield. The Fourier coefficients of the φ correlation, Vn = (cosnφ), have a strong η dependence. In addition, it is found that V1 is approximately inversely proportional to the mid-rapidity event multiplicity, while V2 is independent of it with similar magnitude in the forward (d-going) and backward (Au-going) directions.
We report on the measurements of directed flow v1 and elliptic flow v2 for hadrons (π±, K ±, K0 S , p, φ, Λ and ) from Au+Au collisions at √sN N = 3 GeV and v2 for (π±, K ±, p and p) at 27 and 54.4 GeV with the STAR experiment. While at the two higher energy midcentral collisions the numberof-constituent-quark (NCQ) scaling holds, at 3 GeV the v2 at midrapidity is negative for all hadrons and the NCQ scaling is absent. In addition, the v1 slopes at midrapidity for almost all observed hadrons are found to be positive, implying dominant repulsive baryonic interactions. The features of negative v2 and positive v1 slope at 3 GeV can be reproduced with a baryonic mean-field in transport model calculations. These results imply that the medium in such collisions is likely characterized by baryonic interactions.
In high-energy heavy-ion collisions, partonic collectivity is evidenced by the constituent quark number scaling of elliptic flow anisotropy for identified hadrons. A breaking of this scaling and dominance of baryonic interactions is found for identified hadron collective flow measurements in √sNN = 3 GeV Au+Au collisions. In this paper, we report measurements of the first- and second-order azimuthal anisotropic parameters, v1 and v2, of light nuclei (d, t, 3He, 4He) produced in √sNN = 3 GeV Au+Au collisions at the STAR experiment. An atomic mass number scaling is found in the measured v1 slopes of light nuclei at mid-rapidity. For the measured v2 magnitude, a strong rapidity dependence is observed. Unlike v2 at higher collision energies, the v2 values at mid-rapidity for all light nuclei are negative and no scaling is observed with the atomic mass number. Calculations by the Jet AA Microscopic Transport Model (JAM), with baryonic mean-field plus nucleon coalescence, are in good agreement with our observations, implying baryonic interactions dominate the collective dynamics in 3 GeV Au+Au collisions at RHIC.
We present measurements of the differential cross sections of inclusive J/ψ meson production as a function of transverse momentum (pJ/ψT) using the μ+μ− and e+e− decay channels in proton+proton collisions at center-of-mass energies of 510 and 500 GeV, respectively, recorded by the STAR detector at the Relativistic Heavy Ion Collider. The measurement from the μ+μ− channel is for 0 <pJ/ψT< 9 GeV/c and rapidity range |yJ/ψ|< 0.4, and that from the e+e− channel is for 4 <pJ/ψT< 20 GeV/c and |yJ/ψ|< 1.0. The ψ(2S) to J/ψ ratio is also measured for 4 <pmesonT< 12 GeV/c through the e+e− decay channel. Model calculations, which incorporate different approaches toward the J/ψ production mechanism, are compared with experimental results and show reasonable agreement within uncertainties.
We report on the measurement of the Central Exclusive Production of charged particle pairs h+h− (h = π, K, p) with the STAR detector at RHIC in proton-proton collisions at √s = 200 GeV. The charged particle pairs produced in the reaction pp → p′ + h+h− + p′ are reconstructed from the tracks in the central detector and identified using the specific energy loss and the time of flight method, while the forward-scattered protons are measured in the Roman Pot system. Exclusivity of the event is guaranteed by requiring the transverse momentum balance of all four final-state particles. Differential cross sections are measured as functions of observables related to the central hadronic final state and to the forward-scattered protons. They are measured in a fiducial region corresponding to the acceptance of the STAR detector and determined by the central particles’ transverse momenta and pseudorapidities as well as by the forward-scattered protons’ momenta. This fiducial region roughly corresponds to the square of the four-momentum transfers at the proton vertices in the range 0.04 GeV2 < −t1, −t2 < 0.2 GeV2, invariant masses of the charged particle pairs up to a few GeV and pseudorapidities of the centrally-produced hadrons in the range |η| < 0.7. The measured cross sections are compared to phenomenological predictions based on the Double Pomeron Exchange (DPE) model. Structures observed in the mass spectra of π+π− and K+K− pairs are consistent with the DPE model, while angular distributions of pions suggest a dominant spin-0 contribution to π+π− production. For π+π− production, the fiducial cross section is extrapolated to the Lorentz-invariant region, which allows decomposition of the invariant mass spectrum into continuum and resonant contributions. The extrapolated cross section is well described by the continuum production and at least three resonances, the f0(980), f2(1270) and f0(1500), with a possible small contribution from the f0(1370). Fits to the extrapolated differential cross section as a function of t1 and t2 enable extraction of the exponential slope parameters in several bins of the invariant mass of π+π− pairs. These parameters are sensitive to the size of the interaction region.
The strong force, as one of the four fundamental forces at work in the universe, governs interactions of quarks and gluons, and binds together the atomic nucleus. Notwithstanding decades of progress since Yukawa first developed a description of the force between nucleons in terms of meson exchange, a full understanding of the strong interaction remains a major challenge in modern science. One remaining difficulty arises from the non-perturbative nature of the strong force, which leads to the phenomenon of quark confinement at distance scales on the order of the size of the proton. Here we show that in relativistic heavy-ion collisions, where quarks and gluons are set free over an extended volume, two species of produced vector (spin-1) mesons, namely ϕ and K∗0, emerge with a surprising pattern of global spin alignment. In particular, the global spin alignment for ϕ is unexpectedly large, while that for K∗0 is consistent with zero. The observed spin-alignment pattern and magnitude for the ϕ cannot be explained by conventional mechanisms, while a model with strong force fields accommodates the current data. This is the first time that the strong force field is experimentally supported as a key mechanism that leads to global spin alignment. We extract a quantity proportional to the intensity of the field of the strong force. Within the framework of the Standard Model, where the strong force is typically described in the quark and gluon language of Quantum Chromodynamics, the field being considered here is an effective proxy description. This is a qualitatively new class of measurement, which opens a new avenue for studying the behaviour of strong force fields via their imprint on spin alignment.
Measurements of mass and Λ binding energy of 4ΛH and 4ΛHe in Au+Au collisions at sNN−−−√=3 GeV are presented, with an aim to address the charge symmetry breaking (CSB) problem in hypernuclei systems with atomic number A = 4. The Λ binding energies are measured to be 2.22±0.06(stat.)±0.14(syst.) MeV and 2.38±0.13(stat.)±0.12(syst.) MeV for 4ΛH and 4ΛHe, respectively. The measured Λ binding-energy difference is 0.16±0.14(stat.)±0.10(syst.) MeV for ground states. Combined with the γ-ray transition energies, the binding-energy difference for excited states is −0.16±0.14(stat.)±0.10(syst.) MeV, which is negative and comparable to the value of the ground states within uncertainties. These new measurements on the Λ binding-energy difference in A = 4 hypernuclei systems are consistent with the theoretical calculations that result in ΔB4Λ(1+exc)≈−ΔB4Λ(0+g.s.)<0 and present a new method for the study of CSB effect using relativistic heavy-ion collisions.
We present the first inclusive measurements of the invariant and SoftDrop jet mass in proton-proton collisions at s√=200 GeV at STAR. The measurements are fully corrected for detector effects, and reported differentially in both the jet transverse momentum and jet radius parameter. We compare the measurements to established leading-order Monte Carlo event generators and find that STAR-tuned PYTHIA-6 reproduces the data, while LHC tunes of PYTHIA-8 and HERWIG-7 do not agree with the data, providing further constraints on parameter tuning. Finally, we observe that SoftDrop grooming, for which the contribution of wide-angle non-perturbative radiation is suppressed, shifts the jet mass distributions into closer agreement with the partonic jet mass as determined by both PYTHIA-8 and a next-to-leading-logarithmic accuracy perturbative QCD calculation. These measurements complement recent LHC measurements in a different kinematic region, as well as establish a baseline for future jet mass measurements in heavy-ion collisions at RHIC.
We report a systematic measurement of cumulants, Cn, for net-proton, proton and antiproton, and correlation functions, κn, for proton and antiproton multiplicity distributions up to the fourth order in Au+Au collisions at sNN−−−√ = 7.7, 11.5, 14.5, 19.6, 27, 39, 54.4, 62.4 and 200 GeV. The Cn and κn are presented as a function of collision energy, centrality and kinematic acceptance in rapidity, y, and transverse momentum, pT. The data were taken during the first phase of the Beam Energy Scan (BES) program (2010 -- 2017) at the Relativistic Heavy Ion Collider (RHIC) facility. The measurements are carried out at midrapidity (|y|< 0.5) and transverse momentum 0.4 < pT < 2.0 GeV/c, using the STAR detector at RHIC. We observe a non-monotonic energy dependence (sNN−−−√ = 7.7 -- 62.4 GeV) of the net-proton C4/C2 with the significance of 3.1σ for the 0-5\% central Au+Au collisions. This is consistent with the expectations of critical fluctuations in a QCD-inspired model. Thermal and transport model calculations show a monotonic variation with sNN−−−√. For the multiparticle correlation functions, we observe significant negative values for a two-particle correlation function, κ2, of protons and antiprotons, which are mainly due to the effects of baryon number conservation. Furthermore, it is found that the four-particle correlation function, κ4, of protons plays a role in determining the energy dependence of proton C4/C1 below 19.6 GeV, which cannot be solely understood by the negative values of κ2 for protons.
The STAR Collaboration reports measurements of the transverse single-spin asymmetry (TSSA) of inclusive 𝜋0 at center-of-mass energies (√𝑠) of 200 GeV and 500 GeV in transversely polarized proton-proton collisions in the pseudo-rapidity region 2.7 to 4.0. The results at the two different energies show a continuous increase of the TSSA with Feynman-𝑥, and, when compared to previous measurements, no dependence on √𝑠 from 19.4 GeV to 500 GeV is found. To investigate the underlying physics leading to this large TSSA, different topologies have been studied. 𝜋0 with no nearby particles tend to have a higher TSSA than inclusive 𝜋0. The TSSA for inclusive electromagnetic jets, sensitive to the Sivers effect in the initial state, is substantially smaller, but shows the same behavior as the inclusive 𝜋0 asymmetry as a function of Feynman-𝑥. To investigate final-state effects, the Collins asymmetry of 𝜋0 inside electromagnetic jets has been measured. The Collins asymmetry is analyzed for its dependence on the 𝜋0 momentum transverse to the jet thrust axis and its dependence on the fraction of jet energy carried by the 𝜋0. The asymmetry was found to be small in each case for both center-of-mass energies. All the measurements are compared to QCD-based theoretical calculations for transverse-momentum-dependent parton distribution functions and fragmentation functions. Some discrepancies are found, which indicates new mechanisms might be involved.