Refine
Document Type
- Article (2)
- Contribution to a Periodical (1)
- Doctoral Thesis (1)
Has Fulltext
- yes (4)
Is part of the Bibliography
- no (4)
Keywords
- Benin (1)
- Cercospora (1)
- Fabaceae (1)
- Leguminosae (1)
- Nothopassalora (1)
- Passalora (1)
- Pseudocercospora (1)
- West Africa (1)
- molecular phylogenetic analysis (1)
Institute
- Biowissenschaften (3)
- Präsidium (1)
This study comprises a survey on ecology, morphology and taxonomy of parasitic fungi infecting Pteridophytes and Orchidaceae found by the author on several field trips to Western Panama as part of the project plant parasitic micro-fungi of Western Panama (ppMP). In Panama, approximately 9500 species of vascular plants are found. Of these, Orchidaceae are with ca. 1150 (ca. 12%) species by far the most speciose family. The Pteridophytes in Panama comprise ca. 940 species in 31 families. Most fungal pathogens on Orchidaceae in tropical regions were described from plants in culture or from material intercepted at borders by plant quarantine services and not from their natural habitats. Therefore, little is known about distribution and ecology of these pathogens in their natural range. The author determined and classified several hundred Orchidaceae-species and Pteridophytes at the sites selected in the context of the project. This work facilitated the identification of many host plants (at least to genus-level) even in sterile condition in the field. About 65 species of Pucciniales are known to infest Orchidaceae and ca. 38% of them are described from tropical America. All available types of Pucciniales on Orchidaceae in tropical America were studied and compared with 91 specimens of rust fungi on orchids collected by the author in Panama. Several hundred additional specimens housed in the BPI, almost all intercepted from plant quarantine services, were used for comparison. As result of this work, it is suggested to combine Uromyces stenorrhynchi Henn. to Sphenospora and, as this is the oldest epithet, to synonymize S. kevorkianii Linder, S. mera Cumm. and S. saphena Cumm. with it. Further, it could be demonstrated that Uredo aurantiaca Montemartini, U. cyrtopodii Syd. & P. Syd., U. epidendri Henn., U. guacae Mayor, U. gynandrearum Corda, U. lynchii (Berk.) Plowr., U. neopustulata Cumm. (≡U. pustulata Henn.), U. nigropuncta Henn., U. oncidii Henn., U. ornithidii F. Kern., Cif. & Thurst., and presumably U. scabies Cke., are anamorphs of this variable species. U. gynandrearum is the oldest anamorph-name for all these taxa. Therefore, it can be established that this rust infects more than 80 species of Orchidaceae in three subfamilies. In total, the anamorph of this species was collected by the author on 17 different species of Orchidaceae in Panama which, apart from one species, are all new hosts to science. The molecular data obtained by the author confirm this view, although more data, especially from material from the whole range of distribution of U. gynandrearum, are necessary. Puccinia spiranthicola Cumm. was found to be a synonym of P. cinnamomea Diet. & Holw. and was found by the author on three different Orchidaceae in two subfamilies. Uredo pleurothallidis Keissl. is now considered a synonym of U. wittmackiana Henn. and the latter as the anamorph of Puccinia oncidii Cumm. In the anamorph genus Uredo, a new species was found infecting at least five different species of Sobralia and Elleanthus (Sobraliinae) at different localities. Molecular data indicate it to be related to the currently polyphyletic Phakopsoraceae. For the rusts with suprastomatal sori on Orchidaceae, now separated from Hemileia and placed in the genus Desmosorus (nom. inval.), the current concept with only one taxon is rejected and the establishment of three subspecies is suggested. The complicated taxonomy is discussed and makes it necessary to validate the genus-name and make a new combination. Another Hemileia-anamorph species was found by the author and is considered to be new to science. This is the first species of this alliance in America on Orchidaceae. Molecular data obtained by the author confirm the separation of Desmosorus from Hemileia and the position of the new species. For rusts on Pteridophytes, a new species of Milesia, (teleomorph: Milesina) and a new anamorphic species of Uredinopsis was found, both on hosts hitherto not known. In Calidion, the presumable anamorph-genus of Uncol, the species C. cf. cenicafeae Salazar & Buriticá was found on several new hosts. Further, the teleomorph was found. Morphologically, this teleomorph did not agree with the description of Uncol by the author of the genus, although the anamorph characteristics left no doubt that it is Calidion. Apparently, the description of Uncol is inadequate, but cannot be improved, as the type is unavailable. Molecular data obtained by the author show this species to be closest to Desmosorus. For Uredo superficialis Speg., the anamorph of Desmella, nine new hosts in eight different fern families were found by the author and the collaborators of the ppMP-project. Ecological data indicate that this species includes different host specific races, which, however could not be distinguished morphologically. For all these rusts, a thorough discussion of the ecology in their habitats is given. In total, 21 LSU rDNA sequences from 6 different rust species on Orchidaceae and Pteridophytes were obtained and analyzed with the Maximum Parsimony and Minimum Evolution method. Here, the position of several groups could be confirmed, and some anamorphs could be assigned to different teleomorphic relationships. Within the Ascomycota and their anamorphs, several hitherto unknown species and species not known from these hosts or not known from Panama were found and analyzed. On Orchidaceae, the following fungi belonging to the Ascomycota are described, illustrated and discussed: In the Phyllachorales, a hitherto not known Phyllachora sp. was found on Oncidium warszewiczii Rchb. f. and was compared with the other species of this order currently known from Orchidaceae. In the Asterinaceae s. l. Lembosia cf. epidendri Meir. Silva & O. R. Pereia was found on Maxillaria crassifolia (Lindl.) Rchb. f., which is a new host and new host alliance for this fungus hitherto only known from Brazil. The fungus is described and compared with all species of Asterinaceae currently known on Orchidaceae. In the Meliolaceae, Meliola orchidacearum Cif. was found on Camaridium biolleyi (Schltr.) Schltr. and an Epidendrum sp. which are new hosts and new host alliances of this fungus which was hitherto only known from the Caribbean Islands. It is described, illustrated and compared with the type. In the Glomerellaceae, Glomerella cingulata and its anamorph Colletotrichum gloeosporioides were found on several hosts. The species is illustrated, described and compared with data from literature. In the anamorphic Mycosphaerellaceae, Pseudocercospora odontoglossii (Prill. & Delacr.) U. Braun, a species currently only known from culture, was found on the new host Pleurothallis imraei Lindl. It is illustrated, described and compared with data from literature. On ferns, the following other fungi are described, illustrated and discussed: A conspicuous undescribed form of Polycyclus was found by the author on Elaphoglossum ciliatum (C. Presl.) T. Moore (Dryopteridaceae) and Serpocaulon loriceum (L.) A. R. Sm. (Polypodiaceae). A conspectus of Parmulariaceae infecting ferns is given and demonstrated that Polycyclina should be synonymized under Polycyclus. Summing up, it can be assessed, especially for the Pucciniales, that the most speciose plant family in Panama carries remarkable few species of specific parasites, and that many of them seem to be distributed over a wide range of species which often are not closely related. One reason amongst others seems to be that parasites need a minimum density of host plants in a habitat to survive. As orchid species often occur with only few (and often small) individual plants at a given locality, the probability for a specific pathogen to infect a plant gets too low, hence high diversity by low abundance of hosts might be an impediment for specific pathogens. In this case, unspecific parasites, or such which are infecting larger alliances, are in advantage. Other reasons could be specific traits of orchids, like succulence and mycotrophy which might hamper fungal infections.
Die Bestände des in Deutschland stark gefährdeten Sand-Zwerggrases Mibora minima, für deren Erhalt das Land Hessen eine besondere Verantwortung trägt, gehen seit vielen Jahren zurück. In dieser Arbeit wurden als Beitrag zum Artenhilfsprogramm der Botanischen Vereinigung für Naturschutz in Hessen (BVNH) die noch vorhandenen Populationen erfasst sowie die botanischen und edaphischen Gegebenheiten an den Standorten untersucht. Dabei wurde durch Vergleich von Flächen mit und ohne Bewuchs des Zwerggrases der Frage nachgegangen, ob und inwieweit die Verbreitung der Art durch die Beschaffenheit und Nährstoffversorgung des Bodens bestimmt wird. Es wurde ein weiterer deutlicher Rückgang der südhessischen Populationen um etwa 60 % seit 1999 festgestellt, der am stärksten die Standorte um Mörfelden-Walldorf betrifft. Dagegen haben sich die Bestände bei Rüsselsheim-Königstädten möglicherweise durch Pflegemaßnahmen stabilisiert. Ein bestimmender Einfluss edaphischer Parameter auf die Verteilung der Art innerhalb der kalkfreien Flugsande konnte nicht festgestellt werden. Der indigene floristische Status der Art wird in Frage gestellt und stattdessen ihre Einstufung als Epökophyt westmediterraner Herkunft angenommen.
Cercosporoid fungi (Mycosphaerellaceae, Mycosphaerellales, Ascomycota) are one of the largest and most diverse groups of hyphomycetes causing a wide range of diseases of economically important plants as well as of plants in the wild. Although more than 6000 species are known for this group, the documentation of this fungal group is far from complete. Especially in the tropics, the diversity of cercosporoid fungi is poorly known. The present study aims to identify and characterise cercosporoid fungi collected on host plants belonging to Fabaceae in Benin, West Africa. Information on their morphology, host species and DNA sequence data (18S rDNA, 28S rDNA, ITS and tef1) is provided. DNA sequence data were obtained by a simple and non-culture-based method for DNA isolation which has been applied for cercosporoid fungi for the first time in the context of the present study. Among the loci used for the phylogenetic analysis, tef1 provided the best resolution together with the multigene dataset. Species delimitation in many cases, however, was only possible by combining molecular sequence data with morphological characteristics. Based on forty specimens recently collected in Benin, 18 species are presented with morphological descriptions, illustrations and sequence data. Among these, six species in the genus Cercospora and two species in Pseudocercospora are proposed as species new to science. The newly described species are Cercospora (C.) beninensis on Crotalaria macrocalyx, C. parakouensis on Desmodium tortuosum, C. rhynchophora on Vigna unguiculata, C. vignae-subterraneae on Vigna subterranea, C. tentaculifera on Vigna unguiculata, C. zorniicola on Zornia glochidiata, Pseudocercospora sennicola on Senna occidentalis and Pseudocercospora tabei on Vigna unguiculata. Eight species of cercosporoid fungi are reported for Benin for the first time, three of them, namely C. cf. canscorina, C. cf. fagopyri and C. phaseoli-lunati are new for West Africa. The presence of two species of cercosporoid fungi on Fabaceae previously reported from Benin, namely Nothopassalora personata and Passalora arachidicola, is confirmed.