Refine
Document Type
- Article (2)
Language
- English (2)
Has Fulltext
- yes (2)
Is part of the Bibliography
- no (2)
Keywords
Institute
Motivated by Gröbner basis theory for finite point configurations, we define and study the class of standard complexes associated to a matroid. Standard complexes are certain subcomplexes of the independence complex that are invariant under matroid duality. For the lexicographic term order, the standard complexes satisfy a deletion-contraction-type recurrence. We explicitly determine the lexicographic standard complexes for lattice path matroids using classical bijective combinatorics.
A convex body is unconditional if it is symmetric with respect to reflections in all coordinate hyperplanes. We investigate unconditional lattice polytopes with respect to geometric, combinatorial, and algebraic properties. In particular, we characterize unconditional reflexive polytopes in terms of perfect graphs. As a prime example, we study the signed Birkhoff polytope. Moreover, we derive constructions for Gale-dual pairs of polytopes and we explicitly describe Gröbner bases for unconditional reflexive polytopes coming from partially ordered sets.