Refine
Document Type
- Article (2)
Language
- English (2)
Has Fulltext
- yes (2)
Is part of the Bibliography
- no (2)
Keywords
- Imidacloprid (1)
- Invertebrates (1)
- Multiple stressors (1)
- Nanoplastics (1)
- Thermal desorption GC–MS (1)
Institute
Ecological speciation assumes reproductive isolation to be the product of ecologically based divergent selection. Beside natural selection, sexual selection via phenotype-assortative mating is thought to promote reproductive isolation. Using the neotropical fish Poecilia mexicana from a system that has been described to undergo incipient ecological speciation in adjacent, but ecologically divergent habitats characterized by the presence or absence of toxic H2S and darkness in cave habitats, we demonstrate a gradual change in male body colouration along the gradient of light/darkness, including a reduction of ornaments that are under both inter- and intrasexual selection in surface populations. In dichotomous choice tests using video-animated stimuli, we found surface females to prefer males from their own population over the cave phenotype. However, female cave fish, observed on site via infrared techniques, preferred to associate with surface males rather than size-matched cave males, likely reflecting the female preference for better-nourished (in this case: surface) males. Hence, divergent selection on body colouration indeed translates into phenotype-assortative mating in the surface ecotype, by selecting against potential migrant males. Female cave fish, by contrast, do not have a preference for the resident male phenotype, identifying natural selection against migrants imposed by the cave environment as the major driver of the observed reproductive isolation.
Microplastics (MP) are contaminants of emerging concern in aquatic ecosystems. While the number of studies is rapidly increasing, a comparison of the toxicity of MP and natural particulate matter is largely missing. In addition, research focusses on the impacts of hydrophobic chemicals sorbed to plastics. However, the interactive effects of MP and hydrophilic, dissolved chemicals remain largely unknown. Therefore, we conducted chronic toxicity studies with larvae of the freshwater dipteran Chironomus riparius exposed to unplasticised polyvinyl chloride MP (PVC-MP) as well as kaolin and diatomite as reference materials for 28 days. In addition, we investigated the effects of particles in combination with the neonicotinoid imidacloprid in a multiple-stressor experiment. High concentrations of kaolin positively affected the chironomids. In contrast, exposure to diatomite and PVC-MP reduced the emergence and mass of C. riparius. Likewise, the toxicity of imidacloprid was enhanced in the presence of PVC-MP and slightly decreased in the co-exposure with kaolin. Overall, parallel experiments and chemical analysis indicate that the toxicity of PVC-MP was not caused by leached or sorbed chemicals. Our study demonstrates that PVC-MP induce more severe effects than both natural particulate materials. However, the latter are not benign per se, as the case of diatomite highlights. Considering the high, environmentally irrelevant concentrations needed to induce adverse effects, C. riparius is insensitive to exposures to PVC-MP.