Refine
Language
- English (3)
Has Fulltext
- yes (3)
Is part of the Bibliography
- no (3)
Keywords
- Myotis bechsteinii (1)
- Nyctalus leisleri (1)
- Ursus arctos (1)
- animal personality (1)
- automated radiotelemetry system (1)
- bats (1)
- behaviour (1)
- behavioural syndrome (1)
- birds (1)
- double hierarchical model (1)
he most basic behavioural states of animals can be described as active or passive. While high-resolution observations of activity patterns can provide insights into the ecology of animal species, few methods are able to measure the activity of individuals of small taxa in their natural environment. We present a novel approach in which a combination of automatic radiotracking and machine learning is used to distinguish between active and passive behaviour in small vertebrates fitted with lightweight transmitters (<0.4 g).
We used a dataset containing >3 million signals from very-high-frequency (VHF) telemetry from two forest-dwelling bat species (Myotis bechsteinii [n = 52] and Nyctalus leisleri [n = 20]) to train and test a random forest model in assigning either active or passive behaviour to VHF-tagged individuals. The generalisability of the model was demonstrated by recording and classifying the behaviour of tagged birds and by simulating the effect of different activity levels with the help of humans carrying transmitters. The model successfully classified the activity states of bats as well as those of birds and humans, although the latter were not included in model training (F1 0.96–0.98).
We provide an ecological case-study demonstrating the potential of this automated monitoring tool. We used the trained models to compare differences in the daily activity patterns of two bat species. The analysis showed a pronounced bimodal activity distribution of N. leisleri over the course of the night while the night-time activity of M. bechsteinii was relatively constant. These results show that subtle differences in the timing of species' activity can be distinguished using our method.
Our approach can classify VHF-signal patterns into fundamental behavioural states with high precision and is applicable to different terrestrial and flying vertebrates. To encourage the broader use of our radiotracking method, we provide the trained random forest models together with an R package that includes all necessary data processing functionalities. In combination with state-of-the-art open-source automated radiotracking, this toolset can be used by the scientific community to investigate the activity patterns of small vertebrates with high temporal resolution, even in dense vegetation.
The most basic behavioural states of animals can be described as active or passive. However, while high-resolution observations of activity patterns can provide insights into the ecology of animal species, few methods are able to measure the activity of individuals of small taxa in their natural environment. We present a novel approach in which the automated VHF radio-tracking of small vertebrates fitted with lightweight transmitters (< 0.2 g) is used to distinguish between active and passive behavioural states.
A dataset containing > 3 million VHF signals was used to train and test a random forest model in the assignment of either active or passive behaviour to individuals from two forest-dwelling bat species (Myotis bechsteinii (n = 50) and Nyctalus leisleri (n = 20)). The applicability of the model to other taxonomic groups was demonstrated by recording and classifying the behaviour of a tagged bird and by simulating the effect of different types of vertebrate activity with the help of humans carrying transmitters. The random forest model successfully classified the activity states of bats as well as those of birds and humans, although the latter were not included in model training (F-score 0.96–0.98).
The utility of the model in tackling ecologically relevant questions was demonstrated in a study of the differences in the daily activity patterns of the two bat species. The analysis showed a pronounced bimodal activity distribution of N. leisleri over the course of the night while the night-time activity of M. bechsteinii was relatively constant. These results show that significant differences in the timing of species activity according to ecological preferences or seasonality can be distinguished using our method.
Our approach enables the assignment of VHF signal patterns to fundamental behavioural states with high precision and is applicable to different terrestrial and flying vertebrates. To encourage the broader use of our radio-tracking method, we provide the trained random forest models together with an R-package that includes all necessary data-processing functionalities. In combination with state-of-the-art open-source automated radio-tracking, this toolset can be used by the scientific community to investigate the activity patterns of small vertebrates with high temporal resolution, even in dense vegetation.
1. Recent research highlights the ecological importance of individual variation in behavioural predictability. Individuals may not only differ in their average expression of a behavioural trait (their behavioural type) and in their ability to adjust behaviour to changing environmental conditions (individual plasticity), but also in their variability around their average behaviour (predictability). However, quantifying behavioural predictability in the wild has been challenging due to limitations of acquiring sufficient repeated behavioural measures.
2. We here demonstrate how common biologging data can be used to detect individual variation in behavioural predictability in the wild and reveal the coexistence of highly predictable individuals along with unpredictable individuals within the same population.
3. We repeatedly quantified two behaviours—daily movement distance and diurnal activity—in 62 female brown bears Ursus arctos tracked across 187 monitoring years. We calculated behavioural predictability over the short term (50 consecutive monitoring days within 1 year) and long term (across monitoring years) as the residual intra-individual variability (rIIV) of behaviour around the behavioural reaction norm. We tested whether predictability varies systematically across average behavioural types and whether it is correlated across functionally distinct behaviours, that is, daily movement distance and amount of diurnal activity.
4. Brown bears showed individual variation in behavioural predictability from predictable to unpredictable individuals. For example, the standard deviation around the average daily movement distance within one monitoring year varied up to fivefold from 1.1 to 5.5 km across individuals. Individual predictability for both daily movement distance and diurnality was conserved across monitoring years. Individual predictability was correlated with behavioural type where individuals which were on average more diurnal and mobile were also more unpredictable in their behaviour. In contrast, more nocturnal individuals moved less and were more predictable in their behaviour. Finally, individual predictability in daily movement distance and diurnality was positively correlated, suggesting that individual predictability may be a quantitative trait in its own regard that could evolve and is underpinned by genetic variation.
5. Unpredictable individuals may cope better with stochastic events and unpredictability may hence be an adaptive behavioural response to increased predation risk.