### Refine

#### Year of publication

#### Document Type

- Article (24)
- Conference Proceeding (3)
- Preprint (1)

#### Language

- English (28)

#### Has Fulltext

- yes (28)

#### Is part of the Bibliography

- no (28)

#### Keywords

- Causality (1)
- Effective connectivity (1)
- Electroencephalography (1)
- Information theory (1)
- Information transfer (1)
- Magnetoencephalography (1)
- STDP (1)
- alpha peak (1)
- auto-structure (1)
- hippocampal volume (1)

#### Institute

- Physik (14)
- Frankfurt Institute for Advanced Studies (FIAS) (12)
- Medizin (10)
- MPI für Hirnforschung (3)
- Ernst Strüngmann Institut (1)

Poster presentation from Twentieth Annual Computational Neuroscience Meeting: CNS*2011 Stockholm, Sweden. 23-28 July 2011. One of the central questions in neuroscience is how neural activity is organized across different spatial and temporal scales. As larger populations oscillate and synchronize at lower frequencies and smaller ensembles are active at higher frequencies, a cross-frequency coupling would facilitate flexible coordination of neural activity simultaneously in time and space. Although various experiments have revealed amplitude-to-amplitude and phase-to-phase coupling, the most common and most celebrated result is that the phase of the lower frequency component modulates the amplitude of the higher frequency component. Over the recent 5 years the amount of experimental works finding such phase-amplitude coupling in LFP, ECoG, EEG and MEG has been tremendous (summarized in [1]). We suggest that although the mechanism of cross-frequency-coupling (CFC) is theoretically very tempting, the current analysis methods might overestimate any physiological CFC actually evident in the signals of LFP, ECoG, EEG and MEG. In particular, we point out three conceptual problems in assessing the components and their correlations of a time series. Although we focus on phase-amplitude coupling, most of our argument is relevant for any type of coupling. 1) The first conceptual problem is related to isolating physiological frequency components of the recorded signal. The key point is to notice that there are many different mathematical representations for a time series but the physical interpretation we make out of them is dependent on the choice of the components to be analyzed. In particular, when one isolates the components by Fourier-representation based filtering, it is the width of the filtering bands what defines what we consider as our components and how their power or group phase change in time. We will discuss clear cut examples where the interpretation of the existence of CFC depends on the width of the filtering process. 2) A second problem deals with the origin of spectral correlations as detected by current cross-frequency analysis. It is known that non-stationarities are associated with spectral correlations in the Fourier space. Therefore, there are two possibilities regarding the interpretation of any observed CFC. One scenario is that basic neuronal mechanisms indeed generate an interaction across different time scales (or frequencies) resulting in processes with non-stationary features. The other and problematic possibility is that unspecific non-stationarities can also be associated with spectral correlations which in turn will be detected by cross frequency measures even if physiologically there is no causal interaction between the frequencies. 3) We discuss on the role of non-linearities as generators of cross frequency interactions. As an example we performed a phase-amplitude coupling analysis of two nonlinearly related signals: atmospheric noise and the square of it (Figure 1) observing an enhancement of phase-amplitude coupling in the second signal while no pattern is observed in the first. Finally, we discuss some minimal conditions need to be tested to solve some of the ambiguities here noted. In summary, we simply want to point out that finding a significant cross frequency pattern does not always have to imply that there indeed is physiological cross frequency interaction in the brain.

TRENTOOL : an open source toolbox to estimate neural directed interactions with transfer entropy
(2011)

To investigate directed interactions in neural networks we often use Norbert Wiener's famous definition of observational causality. Wiener’s definition states that an improvement of the prediction of the future of a time series X from its own past by the incorporation of information from the past of a second time series Y is seen as an indication of a causal interaction from Y to X. Early implementations of Wiener's principle – such as Granger causality – modelled interacting systems by linear autoregressive processes and the interactions themselves were also assumed to be linear. However, in complex systems – such as the brain – nonlinear behaviour of its parts and nonlinear interactions between them have to be expected. In fact nonlinear power-to-power or phase-to-power interactions between frequencies are reported frequently. To cover all types of non-linear interactions in the brain, and thereby to fully chart the neural networks of interest, it is useful to implement Wiener's principle in a way that is free of a model of the interaction [1]. Indeed, it is possible to reformulate Wiener's principle based on information theoretic quantities to obtain the desired model-freeness. The resulting measure was originally formulated by Schreiber [2] and termed transfer entropy (TE). Shortly after its publication transfer entropy found applications to neurophysiological data. With the introduction of new, data efficient estimators (e.g. [3]) TE has experienced a rapid surge of interest (e.g. [4]). Applications of TE in neuroscience range from recordings in cultured neuronal populations to functional magnetic resonanace imaging (fMRI) signals. Despite widespread interest in TE, no publicly available toolbox exists that guides the user through the difficulties of this powerful technique. TRENTOOL (the TRansfer ENtropy TOOLbox) fills this gap for the neurosciences by bundling data efficient estimation algorithms with the necessary parameter estimation routines and nonparametric statistical testing procedures for comparison to surrogate data or between experimental conditions. TRENTOOL is an open source MATLAB toolbox based on the Fieldtrip data format. ...

As important as the intrinsic properties of an individual nervous cell stands the network of neurons in which it is embedded and by virtue of which it acquires great part of its responsiveness and functionality. In this study we have explored how the topological properties and conduction delays of several classes of neural networks affect the capacity of their constituent cells to establish well-defined temporal relations among firing of their action potentials. This ability of a population of neurons to produce and maintain a millisecond-precise coordinated firing (either evoked by external stimuli or internally generated) is central to neural codes exploiting precise spike timing for the representation and communication of information. Our results, based on extensive simulations of conductance-based type of neurons in an oscillatory regime, indicate that only certain topologies of networks allow for a coordinated firing at a local and long-range scale simultaneously. Besides network architecture, axonal conduction delays are also observed to be another important factor in the generation of coherent spiking. We report that such communication latencies not only set the phase difference between the oscillatory activity of remote neural populations but determine whether the interconnected cells can set in any coherent firing at all. In this context, we have also investigated how the balance between the network synchronizing effects and the dispersive drift caused by inhomogeneities in natural firing frequencies across neurons is resolved. Finally, we show that the observed roles of conduction delays and frequency dispersion are not particular to canonical networks but experimentally measured anatomical networks such as the macaque cortical network can display the same type of behavior.

Poster presentation: How can two distant neural assemblies synchronize their firings at zero-lag even in the presence of non-negligible delays in the transfer of information between them? Neural synchronization stands today as one of the most promising mechanisms to counterbalance the huge anatomical and functional specialization of the different brain areas. However, and albeit more evidence is being accumulated in favor of its functional role as a binding mechanism of distributed neural responses, the physical and anatomical substrate for such a dynamic and precise synchrony, especially zero-lag even in the presence of non-negligible delays, remains unclear. Here we propose a simple network motif that naturally accounts for zero-lag synchronization of spiking assemblies of neurons for a wide range of temporal delays. We demonstrate that when two distant neural assemblies do not interact directly but relaying their dynamics via a third mediating single neuron or population and eventually achieve zero-lag coherent firing. Extensive numerical simulations of populations of Hodgkin-Huxley neurons interacting in such a network are analyzed. The results show that even with axonal delays as large as 15 ms the distant neural populations can synchronize their firings at zero-lag in a millisecond precision after the exchange of a few spikes. The role of noise and a distribution of axonal delays in the synchronized dynamics of the neural populations are also studied confirming the robustness of this sync mechanism. The proposed network module is densely embedded within the complex functional architecture of the brain and especially within the reciprocal thalamocortical interactions where the role of indirect pathways mimicking direct cortico-cortical fibers has been already suggested to facilitate trans-areal cortical communication. In summary the robust neural synchronization mechanism presented here arises as a consequence of the relay and redistribution of the dynamics performed by a mediating neuronal population. In opposition to previous works, neither inhibitory, gap junctions, nor complex networks need to be invoked to provide a stable mechanism of zero-phase correlated activity of neural populations in the presence of large conduction delays.

Poster presentation: Functional connectivity of the brain describes the network of correlated activities of different brain areas. However, correlation does not imply causality and most synchronization measures do not distinguish causal and non-causal interactions among remote brain areas, i.e. determine the effective connectivity [1]. Identification of causal interactions in brain networks is fundamental to understanding the processing of information. Attempts at unveiling signs of functional or effective connectivity from non-invasive Magneto-/Electroencephalographic (M/EEG) recordings at the sensor level are hampered by volume conduction leading to correlated sensor signals without the presence of effective connectivity. Here, we make use of the transfer entropy (TE) concept to establish effective connectivity. The formalism of TE has been proposed as a rigorous quantification of the information flow among systems in interaction and is a natural generalization of mutual information [2]. In contrast to Granger causality, TE is a non-linear measure and not influenced by volume conduction. ...

Background: Transfer entropy (TE) is a measure for the detection of directed interactions. Transfer entropy is an information theoretic implementation of Wiener's principle of observational causality. It offers an approach to the detection of neuronal interactions that is free of an explicit model of the interactions. Hence, it offers the power to analyze linear and nonlinear interactions alike. This allows for example the comprehensive analysis of directed interactions in neural networks at various levels of description. Here we present the open-source MATLAB toolbox TRENTOOL that allows the user to handle the considerable complexity of this measure and to validate the obtained results using non-parametrical statistical testing. We demonstrate the use of the toolbox and the performance of the algorithm on simulated data with nonlinear (quadratic) coupling and on local field potentials (LFP) recorded from the retina and the optic tectum of the turtle (Pseudemys scripta elegans) where a neuronal one-way connection is likely present.
Results: In simulated data TE detected information flow in the simulated direction reliably with false positives not exceeding the rates expected under the null hypothesis. In the LFP data we found directed interactions from the retina to the tectum, despite the complicated signal transformations between these stages. No false positive interactions in the reverse directions were detected.
Conclusions: TRENTOOL is an implementation of transfer entropy and mutual information analysis that aims to support the user in the application of this information theoretic measure. TRENTOOL is implemented as a MATLAB toolbox and available under an open source license (GPL v3). For the use with neural data TRENTOOL seamlessly integrates with the popular FieldTrip toolbox.

Understanding causal relationships, or effective connectivity, between parts of the brain is of utmost importance because a large part of the brain’s activity is thought to be internally generated and, hence, quantifying stimulus response relationships alone does not fully describe brain dynamics. Past efforts to determine effective connectivity mostly relied on model based approaches such as Granger causality or dynamic causal modeling. Transfer entropy (TE) is an alternative measure of effective connectivity based on information theory. TE does not require a model of the interaction and is inherently non-linear. We investigated the applicability of TE as a metric in a test for effective connectivity to electrophysiological data based on simulations and magnetoencephalography (MEG) recordings in a simple motor task. In particular, we demonstrate that TE improved the detectability of effective connectivity for non-linear interactions, and for sensor level MEG signals where linear methods are hampered by signal-cross-talk due to volume conduction.

Information theory allows us to investigate information processing in neural systems in terms of information transfer, storage and modification. Especially the measure of information transfer, transfer entropy, has seen a dramatic surge of interest in neuroscience. Estimating transfer entropy from two processes requires the observation of multiple realizations of these processes to estimate associated probability density functions. To obtain these necessary observations, available estimators typically assume stationarity of processes to allow pooling of observations over time. This assumption however, is a major obstacle to the application of these estimators in neuroscience as observed processes are often non-stationary. As a solution, Gomez-Herrero and colleagues theoretically showed that the stationarity assumption may be avoided by estimating transfer entropy from an ensemble of realizations. Such an ensemble of realizations is often readily available in neuroscience experiments in the form of experimental trials. Thus, in this work we combine the ensemble method with a recently proposed transfer entropy estimator to make transfer entropy estimation applicable to non-stationary time series. We present an efficient implementation of the approach that is suitable for the increased computational demand of the ensemble method's practical application. In particular, we use a massively parallel implementation for a graphics processing unit to handle the computationally most heavy aspects of the ensemble method for transfer entropy estimation. We test the performance and robustness of our implementation on data from numerical simulations of stochastic processes. We also demonstrate the applicability of the ensemble method to magnetoencephalographic data. While we mainly evaluate the proposed method for neuroscience data, we expect it to be applicable in a variety of fields that are concerned with the analysis of information transfer in complex biological, social, and artificial systems.

Cortical neurons are typically driven by several thousand synapses. The precise spatiotemporal pattern formed by these inputs can modulate the response of a post-synaptic cell. In this work, we explore how the temporal structure of pre-synaptic inhibitory and excitatory inputs impact the post-synaptic firing of a conductance-based integrate and fire neuron. Both the excitatory and inhibitory input was modeled by renewal gamma processes with varying shape factors for modeling regular and temporally random Poisson activity. We demonstrate that the temporal structure of mutually independent inputs affects the post-synaptic firing, while the strength of the effect depends on the firing rates of both the excitatory and inhibitory inputs. In a second step, we explore the effect of temporal structure of mutually independent inputs on a simple version of Hebbian learning, i.e., hard bound spike-timing-dependent plasticity. We explore both the equilibrium weight distribution and the speed of the transient weight dynamics for different mutually independent gamma processes. We find that both the equilibrium distribution of the synaptic weights and the speed of synaptic changes are modulated by the temporal structure of the input. Finally, we highlight that the sensitivity of both the post-synaptic firing as well as the spike-timing-dependent plasticity on the auto-structure of the input of a neuron could be used to modulate the learning rate of synaptic modification.

In complex networks such as gene networks, traffic systems or brain circuits it is important to understand how long it takes for the different parts of the network to effectively influence one another. In the brain, for example, axonal delays between brain areas can amount to several tens of milliseconds, adding an intrinsic component to any timing-based processing of information. Inferring neural interaction delays is thus needed to interpret the information transfer revealed by any analysis of directed interactions across brain structures. However, a robust estimation of interaction delays from neural activity faces several challenges if modeling assumptions on interaction mechanisms are wrong or cannot be made. Here, we propose a robust estimator for neuronal interaction delays rooted in an information-theoretic framework, which allows a model-free exploration of interactions. In particular, we extend transfer entropy to account for delayed source-target interactions, while crucially retaining the conditioning on the embedded target state at the immediately previous time step. We prove that this particular extension is indeed guaranteed to identify interaction delays between two coupled systems and is the only relevant option in keeping with Wiener’s principle of causality. We demonstrate the performance of our approach in detecting interaction delays on finite data by numerical simulations of stochastic and deterministic processes, as well as on local field potential recordings. We also show the ability of the extended transfer entropy to detect the presence of multiple delays, as well as feedback loops. While evaluated on neuroscience data, we expect the estimator to be useful in other fields dealing with network dynamics.