Refine
Document Type
- Article (5)
- Doctoral Thesis (1)
Language
- English (6)
Has Fulltext
- yes (6)
Is part of the Bibliography
- no (6)
Keywords
- hypoxia (2)
- proliferation (2)
- Acute inflammation (1)
- GRAND-SLAM (1)
- HAI‐1 (1)
- HGF (1)
- Peritoneal macrophages (1)
- RNA sequencing (1)
- RNA stability (1)
- SLAM-seq (1)
Institute
In solid tumors, tumor‐associated macrophages (TAMs) commonly accumulate within hypoxic areas. Adaptations to such environments evoke transcriptional changes by the hypoxia‐inducible factors (HIFs). While HIF‐1α is ubiquitously expressed, HIF‐2α appears tissue‐specific with consequences of HIF‐2α expression in TAMs only being poorly characterized. An E0771 allograft breast tumor model revealed faster tumor growth in myeloid HIF‐2α knockout (HIF‐2αLysM−/−) compared with wildtype (wt) mice. In an RNA‐sequencing approach of FACS sorted wt and HIF‐2α LysM−/− TAMs, serine protease inhibitor, Kunitz type‐1 ( Spint1) emerged as a promising candidate for HIF‐2α‐dependent regulation. We validated reduced Spint1 messenger RNA expression and concomitant Spint1 protein secretion under hypoxia in HIF‐2α‐deficient bone marrow–derived macrophages (BMDMs) compared with wt BMDMs. In line with the physiological function of Spint1 as an inhibitor of hepatocyte growth factor (HGF) activation, supernatants of hypoxic HIF‐2α knockout BMDMs, not containing Spint1, were able to release proliferative properties of inactive pro‐HGF on breast tumor cells. In contrast, hypoxic wt BMDM supernatants containing abundant Spint1 amounts failed to do so. We propose that Spint1 contributes to the tumor‐suppressive function of HIF‐2α in TAMs in breast tumor development.
The interaction of macrophages with apoptotic cells is required for efficient resolution of inflammation. While apoptotic cell removal prevents inflammation due to secondary necrosis, it also alters the macrophage phenotype to hinder further inflammatory reactions. The interaction between apoptotic cells and macrophages is often studied by chemical or biological induction of apoptosis, which may introduce artifacts by affecting the macrophages as well and/or triggering unrelated signaling pathways. Here, we set up a pure cell death system in which NIH 3T3 cells expressing dimerizable Caspase-8 were co-cultured with peritoneal macrophages in a transwell system. Phenotype changes in macrophages induced by apoptotic cells were evaluated by RNA sequencing, which revealed an unexpectedly dominant impact on macrophage proliferation. This was confirmed in functional assays with primary peritoneal macrophages and IC-21 macrophages. Moreover, inhibition of apoptosis during Zymosan-induced peritonitis in mice decreased mRNA levels of cell cycle mediators in peritoneal macrophages. Proliferation of macrophages in response to apoptotic cells may be important to increase macrophage numbers in order to allow efficient clearance and resolution of inflammation.
Molecular oxygen (O2) is essential for numerous metabolic processes. Not surprisingly, hypoxia and the resulting adaptations play a pivotal role in pathophysiology, e.g., in cancer or in inflammatory diseases. Of note, myeloid cells are known to accumulate in hypoxic regions such as tumor cores or rheumatoid arthritis joints and may contribute to disease progression. While most studies so far concentrated on transcriptional adaptation by the hypoxia-inducible factors (HIF) 1 and 2 under short term hypoxia, prolonged oxygen deprivation and alternative post-transcriptional regulation are rather poorly investigated.
Consequently, the aim of the study was to generate a comprehensive overview of mRNA de novo synthesis and degradation and its contribution to total mRNA changes in monocytic cells in the course of hypoxia.
To this end, I used thiol-linked alkylation for the metabolic sequencing of RNA (SLAM-Seq) to characterize RNA dynamics under hypoxia. Specifically, I labeled monocytic THP-1 cells under normoxia (N), acute hypoxia (AH; 8 h 1% O2), or chronic hypoxia (CH; 72 h 1% O2) with 4-thiouridine (4sU), which allows for transcriptome-wide identification of de novo synthesized mRNAs and estimation of their half-lives. Total mRNA expression analyses revealed that most changes occurred under CH. Considering that HIF accumulation and resulting transcriptional regulation was shown to decline again under CH, I further analyzed the impact of RNA stability on gene expression. I observed a global reduction in RNA half-lives under hypoxia, indicative for the attenuation of energy-consuming protein synthesis upon oxygen deprivation. Moreover, I observed a subgroup of hypoxic destabilized transcripts with resulting decreased mRNA expression under CH, which consisted of 59 nuclear-encoded mitochondrial mRNAs. This might prevent futile production of new mitochondria under conditions, where mitochondria are even actively degraded to prevent production of detrimental reactive oxygen species.
While stability-regulated transcripts were mainly destabilized under hypoxia, the vast majority of differentially de novo synthesized transcripts were upregulated.
Functional analyses revealed not only hypoxia, but also cholesterol homeostasis and inflammatory response as top enriched terms, corroborating findings on total mRNA level. Focusing on hypoxia-altered cholesterol metabolism, I observed an 9 accumulation of early and a decrease in late cholesterol precursors, which are separated by several oxygen-dependent enzymatic steps. Although total cholesterol levels were only slightly reduced, my data indicate locally lowered endoplasmic reticulum (ER) cholesterol levels under hypoxia, which cause feedback activation of the ER cholesterol-sensing transcription factor sterol regulatory element-binding protein 2 (SREBP2) and induction of cholesterol biosynthesis enzymes. Interestingly, a broad range of interferon-stimulated genes (ISGs), mainly known for their antiviral function, was also induced under hypoxia with similar kinetics as SREBP2 targets, suggesting an immunometabolic crosstalk. While the availability of certain cholesterol biosynthesis intermediates as well as a direct involvement of SREBP2 seemed rather unlikely to cause hypoxic ISG induction, changes in intracellular cholesterol distribution appeared crucial for the hypoxic induction of chemokine-ISGs. Mechanistically, I found that MyD88-dependent toll-like receptor 4 (TLR4) signaling contributes to enhanced hypoxic ISG induction, likely sensitized by changes in cholesterol dynamics. Importantly, hypoxia amplified induction of chemokine-ISGs in monocytes upon treatment with severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) spike protein via TLR4 similarly as after addition of infectious virus, which might contribute to systemic inflammation in hypoxemic patients with severe coronavirus disease-2019 (COVID-19).
Taken together, I comprehensively analyzed RNA dynamics in hypoxic monocytes. Specifically, I identified RNA stability as a modulating mechanism to limit production of mitochondria under oxygen-restricted conditions. Moreover, I characterized the immunometabolic crosstalk between disturbed cholesterol homeostasis and spontaneous induction of interferon (IFN)-signaling in hypoxic monocytes, which might contribute to systemic inflammation in severe cases of COVID-19.
Macrophages constitute a major part of the tumor-infiltrating immune cells. Within the tumor microenvironment, they acquire an alternatively activated, tumor-supporting phenotype. Factors released by tumor cells are crucial for the recruitment of tumor-associated macrophages. In the present project, we aimed to understand the role of hsa-miR-200c-3p (miR-200c) in the interplay between tumor cells and macrophages. To this end, we employed a coculture system of MCF7 breast tumor cells and primary human macrophages and observed the transfer of miR-200c from apoptotic tumor cells to macrophages, which required intact CD36 receptor in macrophages. We further comprehensively determined miR-200c targets in macrophages by mRNA-sequencing and identified numerous migration-associated mRNAs to be downregulated by miR-200c. Consequently, miR-200c attenuated macrophage infiltration into 3-dimensional tumor spheroids. miR-200c-mediated reduction in infiltration further correlated with a miR-200c migration signature comprised of the four miR-200c-repressed, predicted targets PPM1F, RAB11FIB2, RDX, and MSN.
Previous studies towards reduced oxygen availability have mostly focused on changes in total mRNA expression, neglecting underlying transcriptional and post-transcriptional events. Therefore, we generated a comprehensive overview of hypoxia-induced changes in total mRNA expression, global de novo transcription, and mRNA stability in monocytic THP-1 cells. Since hypoxic episodes often persist for prolonged periods, we further compared the adaptation to acute and chronic hypoxia. While total mRNA changes correlated well with enhanced transcription during short-term hypoxia, mRNA destabilization gained importance under chronic conditions. Reduced mRNA stability not only added to a compensatory attenuation of immune responses, but also, most notably, to the reduction in nuclear-encoded mRNAs associated with various mitochondrial functions. These changes may prevent the futile production of new mitochondria under conditions where mitochondria cannot exert their full metabolic function and are indeed actively removed by mitophagy. The post-transcriptional mode of regulation might further allow for the rapid recovery of mitochondrial capacities upon reoxygenation. Our results provide a comprehensive resource of functional mRNA expression dynamics and underlying transcriptional and post-transcriptional regulatory principles during the adaptation to hypoxia. Furthermore, we uncover that RNA stability regulation controls mitochondrial functions in the context of hypoxia.
Despite the progress to understand inflammatory reactions, mechanisms causing their resolution remain poorly understood. Prostanoids, especially prostaglandin E2 (PGE2), are well-characterized mediators of inflammation. PGE2 is produced in an inducible manner in macrophages (Mϕ) by microsomal PGE2-synthase-1 (mPGES-1), with the notion that it also conveys pro-resolving properties. We aimed to characterize the role of mPGES-1 during resolution of acute, zymosan-induced peritonitis. Experimentally, we applied the mPGES-1 inhibitor compound III (CIII) once the inflammatory response was established and confirmed its potent PGE2-blocking efficacy. mPGES-1 inhibition resulted in an incomplete removal of neutrophils and a concomitant increase in monocytes and Mϕ during the resolution process. The mRNA-seq analysis identified enhanced C-X3-C motif receptor 1 (CX3CR1) expression in resident and infiltrating Mϕ upon mPGES-1 inhibition. Besides elevated Cx3cr1 expression, its ligand CX3CL1 was enriched in the peritoneal lavage of the mice, produced by epithelial cells upon mPGES-1 inhibition. CX3CL1 not only increased adhesion and survival of Mϕ but its neutralization also completely reversed elevated inflammatory cell numbers, thereby normalizing the cellular, peritoneal composition during resolution. Our data suggest that mPGES-1-derived PGE2 contributes to the resolution of inflammation by preventing CX3CL1-mediated retention of activated myeloid cells at sites of injury.