Refine
Document Type
- Article (11)
- Conference Proceeding (1)
Has Fulltext
- yes (12)
Is part of the Bibliography
- no (12)
Keywords
- Atomic and molecular interactions with photons (2)
- Atomic and Molecular Physics (1)
- Attosecond science (1)
- Chemical physics (1)
- Electronic structure of atoms and molecules (1)
- Techniques and instrumentation (1)
- attosecond spectroscopy (1)
- high-resolution momentum spectroscopy (1)
- many particle entanglement (1)
- many-electron correlation (1)
Institute
- Physik (12)
- Sportwissenschaften (2)
- Präsidium (1)
The toolbox for imaging molecules is well-equipped today. Some techniques visualize the geometrical structure, others the electron density or electron orbitals. Molecules are many-body systems for which the correlation between the constituents is decisive and the spatial and the momentum distribution of one electron depends on those of the other electrons and the nuclei. Such correlations have escaped direct observation by imaging techniques so far. Here, we implement an imaging scheme which visualizes correlations between electrons by coincident detection of the reaction fragments after high energy photofragmentation. With this technique, we examine the H2 two-electron wave function in which electron–electron correlation beyond the mean-field level is prominent. We visualize the dependence of the wave function on the internuclear distance. High energy photoelectrons are shown to be a powerful tool for molecular imaging. Our study paves the way for future time resolved correlation imaging at FELs and laser based X-ray sources.
When a very strong light field is applied to a molecule an electron can be ejected by tunneling. In order to quantify the time-resolved dynamics of this ionization process, the concept of the Wigner time delay can be used. The properties of this process can depend on the tunneling direction relative to the molecular axis. Here, we show experimental and theoretical data on the Wigner time delay for tunnel ionization of H2 molecules and demonstrate its dependence on the emission direction of the electron with respect to the molecular axis. We find, that the observed changes in the Wigner time delay can be quantitatively explained by elongated/shortened travel paths of the emitted electrons, which occur due to spatial shifts of the electrons’ birth positions after tunneling. Our work provides therefore an intuitive perspective towards the Wigner time delay in strong-field ionization.
The KER for electron capture of vibrational cooled HeH+ and H3 + ions at 20 keV from residual gas atoms has been measured in the Frankfurt Low Energy Storage Ring (FLSR). At a vacuum in the order of few 10-11 mbar, this residual gas consists to 99% of H2 molecules. For the identification of the recoil products of this reaction, a recoil spectrometer (with an MCP-detector with position and time sensitive read out) was installed at one of the focus points (IP) in the FLSR. The planned extension of this set up by a gas target to a full COLTRIMS reaction microscope will be discussed.
A small electrostatic storage ring is the central machine of the Frankfurt Ion Storage Experiments (FIRE) which will be built at the new Stern-Gerlach Center of Frankfurt University. As a true multiuser, multipurpose facility with ion energies up to 50 keV, it will allow new methods to analyze complex many-particle systems from atoms to very large biomolecules. With envisaged storage times of some seconds and beam emittances in the order of a few mm mrad, measurements with up to 6 orders of magnitude better resolutions as compared to single-pass experiments become possible. In comparison to earlier designs, the ring lattice was modified in many details: Problems in earlier designs were related to, e.g., the detection of light particles and highly charged ions with different charge states. Therefore, the deflectors were redesigned completely, allowing a more flexible positioning of the diagnostics. Here, after an introduction to the concept of electrostatic machines, an overview of the planned FIRE is given and the ring lattice and elements are described in detail.
Ein Laserblitz von unvorstellbarer Intensität pulverisiert im Labor ein Molekül. Wachsam zeichnen die Instrumente die Flugbahn und Geschwindigkeit jedes Bruchstücks auf. Physiker gewinnen daraus hochpräzise Informationen über die Molekülstruktur. Auch links- und rechtshändige Formen lassen sich unterscheiden.
We experimentally investigated the quasifree mechanism (QFM) in one-photon double ionization of He and H2 at 800 eV photon energy and circular polarization with a COLTRIMS reaction microscope. Our work provides new insight into this elusive photoionization mechanism that was predicted by Miron Amusia more than four decades ago. We found the distinct four-fold symmetry in the angular emission pattern of QFM electrons from H2 double ionization that has previously only been observed for He. Furthermore, we provide experimental evidence that the photon momentum is not imparted onto the center of mass in quasifree photoionization, which is in contrast to the situation in single ionization and in double ionization mediated by the shake-off and knock-out mechanisms. This finding is substantiated by numerical results obtained by solving the system’s full-dimensional time-dependent Schrödinger equation beyond the dipole approximation.
The COLTRIMS Reaction Microscope C-REMI can image the momentum vectors of all emitted charged fragments in an atomic or molecular reactions similar to the bubble chamber in high energy particle physics. C-REMI can detect fragments with “zero” kinetic energy in an ultrahigh vacuum environment by projecting them with weak electromagnetic fields onto position-sensitive detectors. Geometrically a nearly 4π collection solid angle and a nearly 50% efficiency for a fivefold multi-coincidence can be achieved. Measuring time-of-flight and detector position the momenta of the fragments can be measured with excellent resolution (<0.01 a.u.; see A1 in the Appendix). Thus, multivector correlations in momentum space are measured, which provide insight into the entangled dynamics of atomic and molecular quantum systems. From these vector-correlations phases and energies can be deduced which allow for relative time measurements even in the zeptosecond range. C-REMI provides a “spyhole” into the secrets of ultrafast dynamics of atomic and molecular processes. It is applied today around the globe in numerous research projects in physics and chemistry. The purpose for writing this article is to demonstrate the universal application possibilities of C-REMI, and its high multi-coincidence efficiency and high momentum resolution. This paper will not give a review on all milestone experiments performed with C-REMI.