### Refine

#### Document Type

- Conference Proceeding (4)
- Article (1)

#### Language

- English (5)

#### Has Fulltext

- yes (5)

#### Is part of the Bibliography

- no (5)

#### Keywords

#### Institute

The global center symmetry of quenched QCD at zero baryonic chemical potential is broken spontaneously at a critical temperature Tc leading to a first-order phase transition. Including heavy dynamical quarks breaks the center symmetry explicitly and weakens the first-order phase transition for decreasing quark masses until it turns into a smooth crossover at a Z(2)-critical point. We investigate the Z(2)-critical quark mass value towards the continuum limit for Nf=2 flavors using lattice QCD in the staggered formulation. As part of a continued study, we present results from Monte-Carlo simulations on Nτ=8,10 lattices. Several aspect ratios and quark mass values were simulated in order to obtain the critical mass from a fit of the Polyakov loop to a kurtosis finite size scaling formula. Moreover, the possibility to develop a Ginzburg-Landau effective theory around the Z(2)-critical point is explored.

Quenched QCD at zero baryonic chemical potential undergoes a first-order deconfinement phase transition at a critical temperature Tc, which is related to the spontaneous breaking of the global center symmetry. Including heavy, dynamical quarks breaks the center symmetry explicitly and weakens the first-order phase transition. For decreasing quark masses the first-order phase transition turns into a smooth crossover at a Z2-critical point. The critical quark mass corresponding to this point has been examined with Nf=2 Wilson fermions for several Nτ in a recent study within our group. For comparison, we also locate the critical point with Nf=2 staggered fermions on Nτ=8 lattices. For this purpose we perform Monte Carlo simulations for several quark mass values and various aspect ratios in order to extrapolate to the thermodynamic limit. The critical mass is obtained by fitting to a finite size scaling formula of the kurtosis of the Polyakov loop. Our results indicate large discretization effects, requiring simulations on lattices with Nτ>8.

Approaching the continuum limit of the deconfinement critical point for Nf=2 staggered fermions
(2022)

Quenched QCD at zero baryonic chemical potential undergoes a first-order deconfinement phase transition at a critical temperature Tc, which is related to the spontaneous breaking of the global center symmetry. The center symmetry is broken explicitly by including dynamical quarks, which weaken the first-order phase transition for decreasing quark masses. At a certain critical quark mass, which corresponds to the Z(2)-critical point, the first-order phase transition turns into a smooth crossover. We investigate the Z(2)-critical quark mass for Nf=2 staggered fermions on Nτ=8,10 lattices, where larger Nτ correspond to finer lattices. Monte-Carlo simulations are performed for several quark mass values and aspect ratios in order to extrapolate to the thermodynamic limit. We present final results for Nτ=8 and preliminary results for Nτ=10 for the critical mass, which are obtained from fitting to a kurtosis finite size scaling formula of the absolute value of the Polyakov loop.

The so-called Columbia plot summarises the order of the QCD thermal transition as a function of the number of quark flavours and their masses. Recently, it was demonstrated that the first-order chiral transition region, as seen for Nf∈[3,6] on coarse lattices, exhibits tricritical scaling while extrapolating to zero on sufficiently fine lattices. Here we extend these studies to imaginary baryon chemical potential. A similar shrinking of the first-order region is observed with decreasing lattice spacing, which again appears compatible with a tricritical extrapolation to zero.

Introduction: The German PID-NET registry was founded in 2009, serving as the first national registry of patients with primary immunodeficiencies (PID) in Germany. It is part of the European Society for Immunodeficiencies (ESID) registry. The primary purpose of the registry is to gather data on the epidemiology, diagnostic delay, diagnosis, and treatment of PIDs.
Methods: Clinical and laboratory data was collected from 2,453 patients from 36 German PID centres in an online registry. Data was analysed with the software Stata® and Excel.
Results: The minimum prevalence of PID in Germany is 2.72 per 100,000 inhabitants. Among patients aged 1–25, there was a clear predominance of males. The median age of living patients ranged between 7 and 40 years, depending on the respective PID. Predominantly antibody disorders were the most prevalent group with 57% of all 2,453 PID patients (including 728 CVID patients). A gene defect was identified in 36% of patients. Familial cases were observed in 21% of patients. The age of onset for presenting symptoms ranged from birth to late adulthood (range 0–88 years). Presenting symptoms comprised infections (74%) and immune dysregulation (22%). Ninety-three patients were diagnosed without prior clinical symptoms. Regarding the general and clinical diagnostic delay, no PID had undergone a slight decrease within the last decade. However, both, SCID and hyper IgE- syndrome showed a substantial improvement in shortening the time between onset of symptoms and genetic diagnosis. Regarding treatment, 49% of all patients received immunoglobulin G (IgG) substitution (70%—subcutaneous; 29%—intravenous; 1%—unknown). Three-hundred patients underwent at least one hematopoietic stem cell transplantation (HSCT). Five patients had gene therapy.
Conclusion: The German PID-NET registry is a precious tool for physicians, researchers, the pharmaceutical industry, politicians, and ultimately the patients, for whom the outcomes will eventually lead to a more timely diagnosis and better treatment.