Refine
Year of publication
Document Type
- Article (100)
- Conference Proceeding (5)
- Preprint (2)
Has Fulltext
- yes (107)
Is part of the Bibliography
- no (107)
Keywords
Institute
We present a nucleosynthesis sensitivity study for the γ-process in a Supernova type II model within the NuGrid research platform. The simulations aimed at identifying the relevant local production and destruction rates for the p-nuclei of molybdenum and at determining the sensitivity of the final abundances to these rates. We show that local destruction rates strongly determine the abundance of 92Mo and 94Mo, and quantify the impact.
The neutron capture cross sections of several unstable key isotopes acting as branching points in the s-process are crucial for stellar nucleosynthesis studies, but they are very challenging to measure directly due to the difficult production of sufficient sample material, the high activity of the resulting samples, and the actual (n, γ) measurement, where high neutron fluxes and effective background rejection capabilities are required. At present there are about 21 relevant s-process branching point isotopes whose cross section could not be measured yet over the neutron energy range of interest for astrophysics. However, the situation is changing with some very recent developments and upcoming technologies. This work introduces three techniques that will change the current paradigm in the field: the use of γ-ray imaging techniques in (n, γ) experiments, the production of moderated neutron beams using high-power lasers, and double capture experiments in Maxwellian neutron beams.
s-processing in asymptotic giant branch stars in the light of revised neutron-capture cross sections
(2021)
Current AGB stellar models provide an adequate description of the s-process nucleosynthesis that occurs. Nonetheless, they still suffer from many uncertainties related to the modeling of the 13C pocket formation and the adopted nuclear reaction rates. For many important s-process isotopes, a best set of neutron-capture cross sections was recently re-evaluated. Using stellar models prescribing that the 13C pocket is a by-product of magnetic-buoyancy-induced mixing phenomena, s-process calculations were carried out with this database. Significant effects are found for a few s-only and branching point isotopes, pointing out the need for improved neutron-capture cross section measurements at low energy.
The production of 77,79,85,85mKr and 77Br via the reaction Se(a, x) was investigated between Ea = 11 and 15 MeV using the activation technique. The irradiation of natural selenium targets on aluminum backings was conducted at the Physikalisch-Technische Bundesanstalt (PTB) in Braunschweig, Germany. The spectroscopic analysis of the reaction products was performed using a high-purity germanium detector located at PTB and a low energy photon spectrometer detector at the Goethe University Frankfurt, Germany. Thicktarget yields were determined. The corresponding energy-dependent production cross sections of 77,79,85,85mKr and 77Br were calculated from the thicktarget yields. Good agreement between experimental data and theoretical predictions using the TALYS-1.6 code was found.
We discuss the possibility to build a neutron target for nuclear reaction studies in inverse kinematics utilizing a storage ring and radioactive ion beams. The proposed neutron target is a specially designed spallation target surrounded by a large moderator of heavy water (D2O). We present the resulting neutron spectra and their properties as a target. We discuss possible realizations at different experimental facilities.
The huge neutron fluxes offer the possibility to use research reactors to produce isotopes of interest, which can be investigated afterwards. An example is the half-lives of long-lived isotopes like 129I. A direct usage of reactor neutrons in the astrophysical energy regime is only possible, if the corresponding ions are not at rest in the laboratory frame. The combination of an ion storage ring with a reactor and a neutron guide could open the path to direct measurements of neutron-induced cross sections on short-lived radioactive isotopes in the astrophysically interesting energy regime.
Cross sections for neutron-induced reactions of short-lived nuclei are essential for nuclear astrophysics since these reactions in the stars are responsible for the production of most heavy elements in the universe. These reactions are also key in applied domains like energy production and medicine. Nevertheless, neutron-induced cross-section measurements can be extremely challenging or even impossible to perform due to the radioactivity of the targets involved. Indirect measurements through the surrogate-reaction method can help to overcome these difficulties.
The surrogate-reaction method relies on the use of an alternative reaction that will lead to the formation of the same excited nucleus as in the neutron-induced reaction of interest. The decay probabilities (for fission, neutron and gamma-ray emission) of the nucleus produced via the surrogate reaction allow one to constrain models and the prediction of the desired neutron cross sections.
We propose to perform surrogate reaction measurements in inverse kinematics at heavy-ion storage rings, in particular at the CRYRING@ESR of the GSI/FAIR facility. We present the conceptual idea of the most promising setup to measure for the first time simultaneously the fission, neutron and gamma-ray emission probabilities. The results of the first simulations considering the 238U(d,d') reaction are shown, as well as new technical developments that are being carried out towards this set-up.
Neutron-induced cross sections of short-lived nuclei are highly relevant in many domains such as fundamental nuclear physics, astrophysics and applications in nuclear technology. In particular, these cross sections are essential for understanding the synthesis of elements via the s- and r stellar processes. However, the measurement of such cross sections with current techniques is very difficult or even impossible, because of the difficulties to produce and handle the necessary amounts of radioactive nuclei. Reaching the nuclei of interest is only possible by inverting the reaction kinematics with radioactive beams.
In this contribution we present a project for indirectly determining neutron cross sections via the surrogate-reaction method. This project is based on the measurement of transfer- or inelastic-scattering-induced decay probabilities in inverse kinematics at storage rings. The measured probabilities are then used to tune nuclear-reaction models that will provide much more accurate predictions of the desired neutron cross sections. We also discuss a very ambitious, long-term project to directly measure neutron cross sections in inverse kinematics. It consists in the combination of a radioactive beam facility, an ion storage ring and a spallation neutron source.
Ion optical calculations for a storage ring at the present GSI facility for direct proton-induced reactions relevant for different astrophysical processes are presented. As an example case, the 59Cu(p,γ) and 59Cu(p,α) reactions are shown. The branching of these two reactions is important in X-ray burst scenarios, since it determines the breakout out of the major 56Ni waiting point.