Refine
Document Type
- Article (2)
Language
- English (2)
Has Fulltext
- yes (2)
Is part of the Bibliography
- no (2)
Institute
Many interesting and important membrane proteins are hetero-oligomeric. However, besides naturally abundant examples, the structures of relatively few such complexes are known. Partly, this is due to difficulties in expression, stoichiometric assembly, and in the evaluation of their stability prior to crystallization trials. Here we describe a new approach, which allows rapid assessment of protein complex quality, assembly and stoichiometry, simplifying the search for conditions conducive to long-term stability and crystallization. Multicolour fluorescence size-exclusion chromatography (MC-FSEC) is used to enable tracking of individual subunits through expression, solubilization and purification steps. We show how the method has been applied to the heterodimeric transporter associated with antigen processing (TAP) and demonstrate how it may be extended in order to analyse membrane multisubunit assemblies.
The transporter associated with antigen processing (TAP1/2) translocates cytosolic peptides of proteasomal degradation into the endoplasmic reticulum (ER) lumen. A peptide-loading complex of tapasin, major histocompatibility complex class I, and several auxiliary factors is assembled at the transporter to optimize antigen display to cytotoxic T-lymphocytes at the cell surface. The heterodimeric TAP complex has unique N-terminal domains in addition to a 6 + 6-transmembrane segment core common to most ABC transporters. Here we provide direct evidence that this core TAP complex is sufficient for (i) ER targeting, (ii) heterodimeric assembly within the ER membrane, (iii) peptide binding, (iv) peptide transport, and (v) specific inhibition by the herpes simplex virus protein ICP47 and the human cytomegalovirus protein US6. We show for the first time that the translocation pore of the transporter is composed of the predicted TM-(5-10) of TAP1 and TM-(4-9) of TAP2. Moreover, we demonstrate that the N-terminal domains of TAP1 and TAP2 are essential for recruitment of tapasin, consequently mediating assembly of the macromolecular peptide-loading complex.