Refine
Document Type
- Article (9)
Language
- English (9)
Has Fulltext
- yes (9)
Is part of the Bibliography
- no (9)
Keywords
- storage rings (2)
- Accelerators & Beams (1)
- Atomic, Molecular & Optical (1)
- Bone density (1)
- CAC-DRS Score (1)
- Computed Tomography (1)
- Computed tomography, X-ray (1)
- Contrast agent (1)
- Coronary Heart Disease (1)
- Coronary Plaque Burden (1)
In this paper, we present an experimental and theoretical study of excitation processes for the heaviest stable helium-like ion, that is, He-like uranium occurring in relativistic collisions with hydrogen and argon targets. In particular, we concentrate on angular distributions of the characteristic Kα radiation following the K → L excitation of He-like uranium. We pay special attention to the magnetic sub-level population of the excited 1s2lj states, which is directly related to the angular distribution of the characteristic Kα radiation. We show that the experimental data can be well described by calculations taking into account the excitation by the target nucleus as well as by the target electrons. Moreover, we demonstrate for the first time an important influence of the electron-impact excitation process on the angular distributions of the Kα radiation produced by excitation of He-like uranium in collisions with different targets.
In 2004, Germany introduced a program based on voluntary contracting to strengthen the role of general practice care in the healthcare system. Key components include structured management of chronic diseases, coordinated access to secondary care, data-driven quality improvement, computerized clinical decision-support, and capitation-based reimbursement. Our aim was to determine the long-term effects of this program on the risk of hospitalization of specific categories of high-risk patients. Based on insurance claims data, we conducted a longitudinal observational study from 2011 to 2018 in Baden-Wuerttemberg, Germany. Patients were assigned to one or more of four open cohorts (in 2011, elderly, n = 575,363; diabetes mellitus, n = 163,709; chronic heart failure, n = 82,513; coronary heart disease, n = 125,758). Adjusted for key patient characteristics, logistic regression models were used to compare the hospitalization risk of the enrolled patients (intervention group) with patients receiving usual primary care (control group). At the start of the study and throughout long-term follow-up, enrolled patients in the four cohorts had a lower risk of all-cause hospitalization and ambulatory, care-sensitive hospitalization. Among patients with chronic heart failure and coronary heart disease, the program was associated with significantly reduced risk of cardiovascular-related hospitalizations across the eight observed years. The effect of the program also increased over time. Over the longer term, the results indicate that strengthening primary care could be associated with a substantial reduction in hospital utilization among high-risk patients.
The objective of this pilot clinical study was to assess the safety, technical feasibility, pharmacokinetic (PK) profile and tumour response of DC Bead™ with irinotecan (DEBIRI™) delivered by intra-arterial embolisation for the treatment of metastatic colorectal cancer. Eleven patients with unresectable liver metastases from CRC, tumour burden <30% of liver volume, adequate haematological, liver and renal function, performance status of <2 were included in this study. Patients received up to 4 sessions of TACE with DEBIRI at 3-week intervals. Feasibility of the procedure, safety and tumour response were assessed after each cycle. PK was measured after the first cycle. Patients were followed up to 24 weeks. Only mild to moderate adverse events were observed. DEBIRI is a technically feasibile procedure; no technical complications were observed. Average Cmax for irinotecan and SN-38 was 194 ng/ml and 16.7 ng/ml, respectively, with average t½ of 4.6 h and 12.4 h following administration of DEBIRI. Best overall response during the study showed disease control in 9 patients (2 patients with partial response and 7 with stable disease, overall response rate of 18%). Our study shows that transarterial chemoembolisation with irinotecan-loaded DC beads (DEBIRI) is safe, technically feasible and effective with a good PK profile.
Objective: The aim of this study was to assess the potential risk of gadobutrol-enhanced magnetic resonance imaging (MRI) in patients with moderate to severe renal impairment for the development of nephrogenic systemic fibrosis (NSF).
Materials and Methods: We performed a prospective, international, multicenter, open-label study in 55 centers. Patients with moderate to severe renal impairment scheduled for any gadobutrol-enhanced MRI were included. All patients received a single intravenous bolus injection of gadobutrol at a dose of 0.1 mmol/kg body weight. The primary target variable was the number of patients who develop NSF within a 2-year follow-up period.
Results: A total of 908 patients were enrolled, including 586 with moderate and 284 with severe renal impairment who are at highest risk for developing NSF. The mean time since renal disease diagnosis was 1.83 and 5.49 years in the moderate and severe renal impairment cohort, respectively. Overall, 184 patients (20.3%) underwent further contrast-enhanced MRI with other gadolinium-based contrast agents within the 2-year follow-up. No patient developed symptoms conclusive of NSF.
Conclusions: No safety concerns with gadobutrol in patients with moderate to severe renal impairment were identified. There were no NSF cases.
Objectives: To investigate the diagnostic accuracy of color-coded contrast-enhanced dual-energy CT virtual noncalcium (VNCa) reconstructions for the assessment of lumbar disk herniation compared to unenhanced VNCa imaging.
Methods: A total of 91 patients were retrospectively evaluated (65 years ± 16; 43 women) who had undergone third-generation dual-source dual-energy CT and 3.0-T MRI within an examination interval up to 3 weeks between November 2019 and December 2020. Eight weeks after assessing unenhanced color-coded VNCa reconstructions for the presence and degree of lumbar disk herniation, corresponding contrast-enhanced portal venous phase color-coded VNCa reconstructions were independently analyzed by the same five radiologists. MRI series were additionally analyzed by one highly experienced musculoskeletal radiologist and served as reference standard.
Results: MRI depicted 210 herniated lumbar disks in 91 patients. VNCa reconstructions derived from contrast-enhanced CT scans showed similar high overall sensitivity (93% vs 95%), specificity (94% vs 95%), and accuracy (94% vs 95%) for the assessment of lumbar disk herniation compared to unenhanced VNCa images (all p > .05). Interrater agreement in VNCa imaging was excellent for both, unenhanced and contrast-enhanced CT (κ = 0.84 vs κ = 0.86; p > .05). Moreover, ratings for diagnostic confidence, image quality, and noise differed not significantly between unenhanced and contrast-enhanced VNCa series (all p > .05).
Conclusions: Color-coded VNCa reconstructions derived from contrast-enhanced dual-energy CT yield similar diagnostic accuracy for the depiction of lumbar disk herniation compared to unenhanced VNCa imaging and therefore may improve opportunistic retrospective lumbar disk herniation assessment, particularly in case of staging CT examinations.
Key Points
• Color-coded dual-source dual-energy CT virtual noncalcium (VNCa) reconstructions derived from portal venous phase yield similar high diagnostic accuracy for the assessment of lumbar disk herniation compared to unenhanced VNCa CT series (94% vs 95%) with MRI serving as a standard of reference.
• Diagnostic confidence, image quality, and noise levels differ not significantly between unenhanced and contrast-enhanced portal venous phase VNCa dual-energy CT series.
• Dual-source dual-energy CT might have the potential to improve opportunistic retrospective lumbar disk herniation assessment in CT examinations performed for other indications through reconstruction of VNCa images.
Accurate spectroscopy of highly-charged high-Z ions in a storage ring is demonstrated to be feasible by the use of specially adapted crystal optics. The method has been applied for the measurement of the 1s Lamb shift in hydrogen-like gold (Au+78) in a storage ring through spectroscopy of the Lyman x-rays. This measurement represents the first result obtained for a high-Z element using high-resolution wavelength-dispersive spectroscopy in the hard x-ray regime, paving the way for sensitivity to higher- order QED effects.
The radiative electron capture (REC) into the K shell of bare Xe ions colliding with a hydrogen gas target has been investigated. In this study, the degree of linear polarization of the K-REC radiation was measured and compared with rigorous relativistic calculations as well as with the previous results recorded for U92+. Owing to the improved detector technology, a significant gain in precision of the present polarization measurement is achieved compared to the previously published results. The obtained data confirms that for medium-Z ions such as Xe, the REC process is a source of highly polarized x rays which can easily be tuned with respect to the degree of linear polarization and the photon energy. We argue, in particular, that for relatively low energies the photons emitted under large angles are almost fully linear polarized.
Background: Dual-source dual-energy computed tomography (DECT) offers the potential for opportunistic osteoporosis screening by enabling phantomless bone mineral density (BMD) quantification. This study sought to assess the accuracy and precision of volumetric BMD measurement using dual-source DECT in comparison to quantitative CT (QCT). Methods: A validated spine phantom consisting of three lumbar vertebra equivalents with 50 (L1), 100 (L2), and 200 mg/cm3 (L3) calcium hydroxyapatite (HA) concentrations was scanned employing third-generation dual-source DECT and QCT. While BMD assessment based on QCT required an additional standardised bone density calibration phantom, the DECT technique operated by using a dedicated postprocessing software based on material decomposition without requiring calibration phantoms. Accuracy and precision of both modalities were compared by calculating measurement errors. In addition, correlation and agreement analyses were performed using Pearson correlation, linear regression, and Bland-Altman plots. Results: DECT-derived BMD values differed significantly from those obtained by QCT (p < 0.001) and were found to be closer to true HA concentrations. Relative measurement errors were significantly smaller for DECT in comparison to QCT (L1, 0.94% versus 9.68%; L2, 0.28% versus 5.74%; L3, 0.24% versus 3.67%, respectively). DECT demonstrated better BMD measurement repeatability compared to QCT (coefficient of variance < 4.29% for DECT, < 6.74% for QCT). Both methods correlated well to each other (r = 0.9993; 95% confidence interval 0.9984–0.9997; p < 0.001) and revealed substantial agreement in Bland-Altman plots. Conclusions: Phantomless dual-source DECT-based BMD assessment of lumbar vertebra equivalents using material decomposition showed higher diagnostic accuracy compared to QCT.
Highlights
• Assessment of coronary artery plaque burden according to the CAC-DRS Score correlated well with pulmonary involvement of SARS-CoV-2 pneumonia (min. r=0.81, 95% CI 0.76 to 0.86).
• Visual and quantitative CAC-DRS Score of coronary artery plaque burden provided independent prognostic information on all-cause mortality in patients with SARS-CoV-2 pneumonia (p=0.0016 and p<0.0001, respectively).
• Incorporating CAC-DRS Score and pulmonary involvement into clinical decision making revealed great potential to discriminate patients with fatal outcomes from a mild course of disease (AUC 0.938, 95% CI 0.89 to 0.97) and the need for intensive care treatment (AUC 0.801, 95% CI 0.77 to 0.83).
Purpose: To assess and correlate pulmonary involvement and outcome of SARS-CoV-2 pneumonia with the degree of coronary plaque burden based on the CAC-DRS classification (Coronary Artery Calcium Data and Reporting System).
Methods: This retrospective study included 142 patients with confirmed SARS-CoV-2 pneumonia (58 ± 16 years; 57 women) who underwent non-contrast CT between January 2020 and August 2021 and were followed up for 129 ± 72 days. One experienced blinded radiologist analyzed CT series for the presence and extent of calcified plaque burden according to the visual and quantitative HU-based CAC-DRS Score. Pulmonary involvement was automatically evaluated with a dedicated software prototype by another two experienced radiologists and expressed as Opacity Score.
Results: CAC-DRS Scores derived from visual and quantitative image evaluation correlated well with the Opacity Score (r=0.81, 95% CI 0.76-0.86, and r=0.83, 95% CI 0.77-0.89, respectively; p<0.0001) with higher correlation in severe than in mild stage SARS-CoV-2 pneumonia (p<0.0001). Combined, CAC-DRS and Opacity Scores revealed great potential to discriminate fatal outcomes from a mild course of disease (AUC 0.938, 95% CI 0.89-0.97), and the need for intensive care treatment (AUC 0.801, 95% CI 0.77-0.83). Visual and quantitative CAC-DRS Scores provided independent prognostic information on all-cause mortality (p=0.0016 and p<0.0001, respectively), both in univariate and multivariate analysis.
Conclusions: Coronary plaque burden is strongly correlated to pulmonary involvement, adverse outcome, and death due to respiratory failure in patients with SARS-CoV-2 pneumonia, offering great potential to identify individuals at high risk.