Refine
Year of publication
- 2020 (4)
Document Type
- Article (4)
Language
- English (4)
Has Fulltext
- yes (4)
Is part of the Bibliography
- no (4)
Keywords
- dental implants (2)
- Biopsy (1)
- Dental implant (1)
- Immunohistochemistry (1)
- Macrophage polarization (1)
- Peri-implantitis (1)
- anti-inflammatory agents (1)
- cranberry (1)
- free gingival graft (1)
- interleukins (1)
Institute
- Medizin (4)
Background: The present study aimed to assess the three‐dimensional changes following soft tissue augmentation using free gingival grafts (FGG) at implant sites over a 3‐month follow‐up period.
Methods: This study included 12 patients exhibiting deficient keratinized tissue (KT) width (i.e., <2 mm) at the vestibular aspect of 19 implants who underwent soft tissue augmentation using FGG at second stage surgery following implant placement. Twelve implants were considered for the statistical analysis (n = 12). The region of interest (ROI) was intraorally scanned before surgery (S0), immediately post‐surgery (S1), 30 (S2) and 90 (S3) days after augmentation. Digital scanned files were used for quantification of FGG surface area (SA) and converted to standard tessellation language (STL) format for superimposition and evaluation of thickness changes between the corresponding time points. FGG shrinkage (%) in terms of SA and thickness was calculated between the assessed time points.
Results: Mean FGG SA amounted to 91 (95% CI: 63 to 119), 76.2 (95% CI: 45 to 106), and 61.3 (95% CI: 41 to 81) mm2 at S1, S2, and S3, respectively. Mean FGG SA shrinkage rate was 16.3% (95% CI: 3 to 29) from S1 to S2 and 33% (95% CI: 19 to 46) from S1 to S3. Mean thickness gain from baseline (S0) to S1, S2, and S3 was 1.31 (95% CI: 1.2 to 1.4), 0.82 (95% CI: 0.5 to 1.12), and 0.37 (0.21 to 0.5) mm, respectively. FGG thickness shrinkage was of 38% (95% CI: 17.6 to 58) from S1 to S2 and 71.8% (95% CI: 60 to 84) from S1 to S3. Dimensional changes from S1 to S3 were statistically significant, P <0.017. Soft tissue healing was uneventful in all patients.
Conclusions: The present three‐dimensional assessment suggests that FGG undergo significant dimensional changes in SA and thickness over a 3‐month healing period.
Background and Objective: Macrophages’ cytokine expression and polarization play a substantial role in the host's “destructive” inflammatory response to periodontal and peri‐implant pathogens. This study aimed to evaluate cell viability, anti‐inflammatory activity, and macrophage polarization properties of different cranberry concentrates.
Methods: THP‐1 cells (monocytic line) were treated with phorbol myristic acid to induce macrophage differentiation. Human gingival fibroblasts (HFIB‐G cell line), osteosarcoma‐derived osteoblasts (SAOS‐2 cell line), and induced macrophages were treated with cranberry concentrates at 25, 50, and 100 µg/mL for 120 seconds, 1 hour and 24 hours. Untreated cells at the same time points served as controls. For anti‐inflammatory analysis, induced macrophages exposed to cranberry concentrates (A‐type PACs) were stimulated with lipopolysaccharides (LPS) derived from E coli for 24 hours. Cell viability, interleukin (IL)‐8, IL‐1 ß, IL‐6, and IL‐10 expression of LPS‐stimulated macrophages, and macrophage polarization markers were evaluated through determination of live‐cell protease activity, enzyme‐linked immunosorbent assay, and immunofluorescence staining semi‐quantification.
Results: Cranberry concentrates (A‐type PACs) did not reduce HGF, SAOS‐2, and macrophage viability after 24 hours of exposure. Pro‐inflammatory cytokine expression (ie IL‐8 and IL‐6) was downregulated in LPS‐stimulated macrophages by cranberry concentrates at 50 and 100 µg/mL. Anti‐inflammatory IL‐10 expression was significantly upregulated in LPS‐stimulated macrophages by cranberry concentrates at 100 µg/mL after 24 hours of exposure. M1 polarization significantly decreased when LPS‐stimulated macrophages were exposed to cranberry concentrates. High levels of positive M1 macrophages were present in all untreated control groups. M2 polarization significantly increased at all LPS‐stimulated macrophages exposed to cranberry concentrates for 1 and 24 hours.
Conclusion: Cranberry‐derived proanthocyanidins may have the potential to act as an anti‐inflammatory component in the therapy of periodontal and peri‐implant diseases.
Aim: To assess volumetric tissue changes at peri‐implantitis sites following combined surgical therapy of peri‐implantitis over a 6‐month follow‐up period.
Materials and Methods: Twenty patients (n = 28 implants) diagnosed with peri‐implantitis underwent access flap surgery, implantoplasty at supracrestally or bucally exposed implant surfaces and augmentation at intra‐bony components using a natural bone mineral and application of a native collagen membrane during clinical routine treatments. The peri‐implant region of interest (ROI) was intra‐orally scanned pre‐operatively (S0), and after 1 (S1) and 6 (S2) months following surgical therapy. Digital files were converted to standard tessellation language (STL) format for superimposition and assessment of peri‐implant volumetric variations between time points. The change in thickness was assessed at a standardized ROI, subdivided into three equidistant sections (i.e. marginal, medial and apical). Peri‐implant soft tissue contour area (STCA) (mm2) and its corresponding contraction rates (%) were also assessed.
Results: Peri‐implant tissues revealed a mean thickness change (loss) of −0.11 and −0.28 mm at 1 and 6 months. S0 to S1 volumetric variations pointed to a thickness change of −0.46, 0.08 and 0.4 mm at marginal, medial and apical regions, respectively. S0 to S2 analysis exhibited corresponding thickness changes of −0.61, −0.25 and −0.09 mm, respectively. The thickness differences between the areas were statistically significant at both time periods. The mean peri‐implant STCA totalled to 189.2, 175 and 158.9 mm2 at S0, S1 and S2, showing a significant STCA contraction rate of 7.9% from S0 to S1 and of 18.5% from S0 to S2. Linear regression analysis revealed a significant association between the pre‐operative width of keratinized mucosa (KM) and STCA contraction rate.
Conclusions: The peri‐implant mucosa undergoes considerable volumetric changes after combined surgical therapy. However, tissue contraction appears to be influenced by the width of KM.
Objectives: To immunohistochemically characterize and correlate macrophage M1/M2 polarization status with disease severity at peri-implantitis sites.
Materials and methods: A total of twenty patients (n = 20 implants) diagnosed with peri-implantitis (i.e., bleeding on probing with or without suppuration, probing depths ≥ 6 mm, and radiographic marginal bone loss ≥ 3 mm) were included. The severity of peri-implantitis was classified according to established criteria (i.e., slight, moderate, and advanced). Granulation tissue biopsies were obtained during surgical therapy and prepared for immunohistological assessment and macrophage polarization characterization. Macrophages, M1, and M2 phenotypes were identified through immunohistochemical markers (i.e., CD68, CD80, and CD206) and quantified through histomorphometrical analyses.
Results: Macrophages exhibiting a positive CD68 expression occupied a mean proportion of 14.36% (95% CI 11.4–17.2) of the inflammatory connective tissue (ICT) area. Positive M1 (CD80) and M2 (CD206) macrophages occupied a mean value of 7.07% (95% CI 5.9–9.4) and 5.22% (95% CI 3.8–6.6) of the ICT, respectively. The mean M1/M2 ratio was 1.56 (95% CI 1–12–1.9). Advanced peri-implantitis cases expressed a significantly higher M1 (%) when compared with M2 (%) expression. There was a significant correlation between CD68 (%) and M1 (%) expression and probing depth (PD) values.
Conclusion: The present immunohistochemical analysis suggests that macrophages constitute a considerable proportion of the inflammatory cellular composition at peri-implantitis sites, revealing a significant higher expression for M1 inflammatory phenotype at advanced peri-implantitis sites, which could possibly play a critical role in disease progression.
Clinical relevance: Macrophages have critical functions to establish homeostasis and disease. Bacteria might induce oral dysbiosis unbalancing the host’s immunological response and triggering inflammation around dental implants. M1/M2 status could possibly reveal peri-implantitis’ underlying pathogenesis.