Refine
Language
- English (3)
Has Fulltext
- yes (3)
Is part of the Bibliography
- no (3)
Keywords
- CRISPR/Cas9 (2)
- HLA class I (2)
- MHC (2)
- APM (1)
- Antigen processing and presentation (1)
- Antigens/Peptides/Epitopes (1)
- Biochemistry (1)
- Biological techniques (1)
- Cell biology (1)
- Human (1)
Institute
A single model system for integrative studies on multiple facets of antigen presentation is lacking. PAKC is a novel panel of ten cell lines knocked out for individual components of the HLA class I antigen presentation pathway. PAKC will accelerate HLA-I research in the fields of oncology, infectiology, and autoimmunity.
With the emergence of immunotherapies, the understanding of functional HLA class I antigen presentation to T cells is more relevant than ever. Current knowledge on antigen presentation is based on decades of research in a wide variety of cell types with varying antigen presentation machinery (APM) expression patterns, proteomes and HLA haplotypes. This diversity complicates the establishment of individual APM contributions to antigen generation, selection and presentation. Therefore, we generated a novel Panel of APM Knockout Cell lines (PAKC) from the same genetic origin. After CRISPR/Cas9 genome-editing of ten individual APM components in a human cell line, we derived clonal cell lines and confirmed their knockout status and phenotype. We then show how PAKC will accelerate research on the functional interplay between APM components and their role in antigen generation and presentation. This will lead to improved understanding of peptide-specific T cell responses in infection, cancer and autoimmunity.
Major histocompatibility complex class I (MHC I) molecules present antigenic peptides to cytotoxic T cells to eliminate infected or cancerous cells. The transporter associated with antigen processing (TAP) shuttles proteasomally generated peptides into the ER for MHC I loading. As central part of the peptide-loading complex (PLC), TAP is targeted by viral factors, which inhibit peptide supply and thereby impact MHC I-mediated immune responses. However, it is still poorly understood how antigen presentation via different MHC I allotypes is affected by TAP inhibition. Here, we show that conditional expression of herpes simplex viral ICP47 suppresses surface presentation of HLA-A and HLA-C, but not of HLA-B, while the human cytomegaloviral US6 reduces surface levels of all MHC I allotypes. This marked difference in HLA-B antigen presentation is echoed by an enrichment of HLA-B allomorphs at US6-arrested PLC in comparison to ICP47-PLC. Although both viral factors prevent TAP-mediated peptide supply, our data imply that MHC I allomorphs favor different conformationally arrested states of the PLC, leading to differential downregulation of MHC I surface presentation. These findings will help understand MHC I biology in general and will even advance the targeted treatment of infections depending on patients’ allotypes.