Refine
Document Type
- Article (16)
Language
- English (16)
Has Fulltext
- yes (16)
Is part of the Bibliography
- no (16)
Keywords
- ceramides (4)
- stroke (4)
- multiple sclerosis (3)
- sphingosine 1-phosphate (3)
- Blood-brain barrier (2)
- FTY720 (2)
- Hemorrhage (2)
- sphingolipids (2)
- sphingosine 1-phosphate receptor (2)
- Anticoagulation (1)
Depletion of the enzyme cofactor, tetrahydrobiopterin (BH4), in T-cells was shown to prevent their proliferation upon receptor stimulation in models of allergic inflammation in mice, suggesting that BH4 drives autoimmunity. Hence, the clinically available BH4 drug (sapropterin) might increase the risk of autoimmune diseases. The present study assessed the implications for multiple sclerosis (MS) as an exemplary CNS autoimmune disease. Plasma levels of biopterin were persistently low in MS patients and tended to be lower with high Expanded Disability Status Scale (EDSS). Instead, the bypass product, neopterin, was increased. The deregulation suggested that BH4 replenishment might further drive the immune response or beneficially restore the BH4 balances. To answer this question, mice were treated with sapropterin in immunization-evoked autoimmune encephalomyelitis (EAE), a model of multiple sclerosis. Sapropterin-treated mice had higher EAE disease scores associated with higher numbers of T-cells infiltrating the spinal cord, but normal T-cell subpopulations in spleen and blood. Mechanistically, sapropterin treatment was associated with increased plasma levels of long-chain ceramides and low levels of the poly-unsaturated fatty acid, linolenic acid (FA18:3). These lipid changes are known to contribute to disruptions of the blood–brain barrier in EAE mice. Indeed, RNA data analyses revealed upregulations of genes involved in ceramide synthesis in brain endothelial cells of EAE mice (LASS6/CERS6, LASS3/CERS3, UGCG, ELOVL6, and ELOVL4). The results support the view that BH4 fortifies autoimmune CNS disease, mechanistically involving lipid deregulations that are known to contribute to the EAE pathology.
Anticoagulation with warfarin and rivaroxaban ameliorates experimental autoimmune encephalomyelitis
(2017)
Background: In multiple sclerosis, coagulation factors have been shown to modulate inflammation. In this translational study, we investigated whether long-term anticoagulation with warfarin or rivaroxaban has beneficial effects on the course of autoimmune experimental encephalomyelitis (EAE).
Methods: Female SJL/J mice treated with anticoagulants namely warfarin or rivaroxaban were immunized with PLP139–151. Stable anticoagulation was maintained throughout the entire experiment. Mice without anticoagulation treated with the vehicle only were used as controls. The neurological deficit was recorded during the course of EAE, and histopathological analyses of inflammatory lesions were performed.
Results: In preventive settings, both treatment with warfarin and rivaroxaban reduced the maximum EAE score as compared to the control group and led to a reduction of inflammatory lesions in the spinal cord. In contrast, therapeutic treatment with warfarin had no beneficial effects on the clinical course of EAE. Signs of intraparenchymal hemorrhage at the site of the inflammatory lesions were not observed.
Conclusion: We developed long-term anticoagulation models that allowed exploring the course of EAE under warfarin and rivaroxaban treatment. We found a mild preventive effect of both warfarin and rivaroxaban on neurological deficits and local inflammation, indicating a modulation of the disease induction by anticoagulation.
Sphingosine 1-phosphate (S1P), derived from membrane sphingolipids, is a pleiotropic bioactive lipid mediator capable of evoking complex immune phenomena. Studies have highlighted its importance regarding intracellular signaling cascades as well as membrane-bound S1P receptor (S1PR) engagement in various clinical conditions. In neurological disorders, the S1P–S1PR axis is acknowledged in neurodegenerative, neuroinflammatory, and cerebrovascular disorders. Modulators of S1P signaling have enabled an immense insight into fundamental pathological pathways, which were pivotal in identifying and improving the treatment of human diseases. However, its intricate molecular signaling pathways initiated upon receptor ligation are still poorly elucidated. In this review, the authors highlight the current evidence for S1P signaling in neurodegenerative and neuroinflammatory disorders as well as stroke and present an array of drugs targeting the S1P signaling pathway, which are being tested in clinical trials. Further insights on how the S1P–S1PR axis orchestrates disease initiation, progression, and recovery may hold a remarkable potential regarding therapeutic options in these neurological disorders.
Background and purpose: The astroglial protein GFAP is a blood biomarker indicative of intracerebral hemorrhage in patients with acute stroke. Due to its brain specificity and the necessity of brain damage for its detectability in blood, we hypothesized that GFAP could be an interesting marker in cases with primary cerebral cause of death, e.g., traumatic brain injury.
Methods: All corpses scheduled for an autopsy in the Frankfurt Department of Forensic medicine within a 15-month period were included in the study. Cases with a known history of brain disease in the 3 months before death were excluded. During autopsy, blood was collected and GFAP serum levels were determined using a commercially available ELISA. The autopsy protocols were reviewed for the presence of a primary cerebral or a primary non-cerebral cause of death. Agony time was also determined.
Results: A total of 129 autopsy cases were included. GFAP concentrations did not differ between cerebral (median 0.96 μg/l, IQR 5.03) and non-cerebral causes of death (1.21 μg/l, 3.58). GFAP levels were found to be unaffected by hemolysis or post-mortem interval. GFAP levels were found to be increased in cases with prolonged agony times (median 1.76 μg/l [IQR 4.70]) compared to short (0.58 μg/l [0.58]; p<0.001) and ultra-short agony times (0.21 μg/l [0.12]; p = 0.002).
Conclusion: Post-mortem GFAP serum concentrations correlate with agony time and might therefore be useful for the evaluation of the severity of brain damage in prolonged death. Elevated GFAP serum levels do not indicate a primary cerebral cause of death.
Blood levels of Glial Fibrillary Acidic Protein (GFAP) in patients with neurological diseases
(2013)
Background and Purpose: The brain-specific astroglial protein GFAP is a blood biomarker candidate indicative of intracerebral hemorrhage in patients with symptoms suspicious of acute stroke. Comparably little, however, is known about GFAP release in other neurological disorders. In order to identify potential “specificity gaps” of a future GFAP test used to diagnose intracerebral hemorrhage, we measured GFAP in the blood of a large and rather unselected collective of patients with neurological diseases.
Methods: Within a one-year period, we randomly selected in-patients of our university hospital for study inclusion. Patients with ischemic stroke, transient ischemic attack and intracerebral hemorrhage were excluded. Primary endpoint was the ICD-10 coded diagnosis reached at discharge. During hospital stay, blood was collected, and GFAP plasma levels were determined using an advanced prototype immunoassay at Roche Diagnostics.
Results: A total of 331 patients were included, covering a broad spectrum of neurological diseases. GFAP levels were low in the vast majority of patients, with 98.5% of cases lying below the cut-off that was previously defined for the differentiation of intracerebral hemorrhage and ischemic stroke. No diagnosis or group of diagnoses was identified that showed consistently increased GFAP values. No association with age and sex was found.
Conclusion: Most acute and chronic neurological diseases, including typical stroke mimics, are not associated with detectable GFAP levels in the bloodstream. Our findings underline the hypothesis that rapid astroglial destruction as in acute intracerebral hemorrhage is mandatory for GFAP increase. A future GFAP blood test applied to identify patients with intracerebral hemorrhage is likely to have a high specificity.
Background: Sphingolipids are versatile signaling molecules derived from membrane lipids of eukaryotic cells. Ceramides regulate cellular processes such as proliferation, differentiation and apoptosis and are involved in cellular stress responses. Experimental evidence suggests a pivotal role of sphingolipids in the pathogenesis of cardiovascular diseases, including ischemic stroke. A neuroprotective effect has been shown for beta-adrenergic antagonists in rodent stroke models and supported by observational clinical data. However, the exact underlying pathophysiological mechanisms are still under investigation. We aimed to examine the influence of propranolol on the ceramide metabolism in the stroke-affected brain.
Methods: Mice were subjected to 60 or 180 min transient middle cerebral artery occlusion (tMCAO) and infarct size, functional neurological deficits, glucose tolerance, and brain ceramide levels were assessed after 12, 24, and 72 h to evaluate whether the latter two processes occur in a similar time frame. Next, we assessed the effects of propranolol (10 mg/kg bw) at 0, 4 and 8 h after tMCAO and FTY720 (fingolimod; 1 mg/kg) on infarct size, functional outcome, immune cell counts and brain ceramide levels at 24 h after 60 min tMCAO.
Results: We found a temporal coincidence between stroke-associated impaired glucose tolerance and brain ceramide accumulation. Whereas propranolol reduced ischemic lesion size, improved functional outcome and reduced brain ceramide accumulation without an effect on circulating immune cells, FTY720 showed the known neuroprotective effect and strong reduction of circulating immune cells without affecting brain ceramide accumulation.
Conclusions: Propranolol ameliorates both stroke-associated impairment of glucose tolerance and brain ceramide accumulation which are temporally linked, strengthening the evidence for a role of the sympathetic nervous system in regulating post-stroke glucose metabolism and its metabolic consequences in the brain.
With increasing distribution of endovascular stroke therapies, transient middle cerebral artery occlusion (tMCAO) in mice now more than ever depicts a relevant patient population with recanalized M1 occlusion. In this case, the desired therapeutic effect of blood flow restauration is accompanied by breakdown of the blood-brain barrier (BBB) and secondary reperfusion injury. The aim of this study was to elucidate short and intermediate-term transcriptional patterns and the involved pathways covering the different cellular players at the neurovascular unit after transient large vessel occlusion. To achieve this, male C57Bl/6J mice were treated according to an intensive post-stroke care protocol after 60 min occlusion of the middle cerebral artery or sham surgery to allow a high survival rate. After 24 h or 7 days, RNA from microvessel fragments from the ipsilateral and the contralateral hemispheres was isolated and used for mRNA sequencing. Bioinformatic analyses allowed us to depict gene expression changes at two timepoints of neurovascular post-stroke injury and regeneration. We validated our dataset by quantitative real time PCR of BBB-associated targets with well-characterized post-stroke dynamics. Hence, this study provides a well-controlled transcriptome dataset of a translationally relevant mouse model 24 h and 7 days after stroke which might help to discover future therapeutic targets in cerebral ischemia/reperfusion injury.
Ceramides induce important intracellular signaling pathways, modulating proliferation, migration, apoptosis, and inflammation. However, the relevance of the ceramide metabolism in the reconvalescence phase after stroke is unclear. Besides its well-known property as a selective serotonin reuptake inhibitor, fluoxetine has been reported to inhibit the acid sphingomyelinase (ASM), a key regulator of ceramide levels which derives ceramide from sphingomyelin. Furthermore, fluoxetine has shown therapeutic potential in a randomized controlled rehabilitation trial in stroke patients. Our aim was to investigate and modulate ceramide concentrations in the peri-infarct cortex, whose morphological and functional properties correlate with long-term functional outcome in stroke. We show that certain ceramide species are modulated after experimental stroke and that these changes do not result from alterations of ASM activity, but rather from nontranscriptional induction of the ceramide de novo pathway. Unexpectedly, although reducing lesion size, fluoxetine did not improve functional outcome in our model and had no significant influence on ASM activity or the concentration of ceramides. The ceramide metabolism could emerge as a potential therapeutic target in the reconvalescence phase after stroke, as its accumulation in the peri-infarct cortex potentially influences membrane functions as well as signaling events in the tissue essential for neurological recovery.
Background: The Sphingosine-1-phosphate (S1P) signaling pathway is known to influence pathophysiological processes within the brain and the synthetic S1P analog FTY720 has been shown to provide neuroprotection in experimental models of acute stroke. However, the effects of a manipulation of S1P signaling at later time points after experimental stroke have not yet been investigated. We examined whether a relatively late initiation of a FTY720 treatment has a positive effect on long-term neurological outcome with a focus on reactive astrogliosis, synapses and neurotrophic factors.
Methods: We induced photothrombotic stroke (PT) in adult C57BL/6J mice and allowed them to recover for three days. Starting on post-stroke day 3, mice were treated with FTY720 (1 mg/kg b.i.d.) for 5 days. Behavioral outcome was observed until day 31 after photothrombosis and periinfarct cortical tissue was analyzed using tandem mass-spectrometry, TaqMan®analysis and immunofluorescence.
Results: FTY720 treatment results in a significantly better functional outcome persisting up to day 31 after PT. This is accompanied by a significant decrease in reactive astrogliosis and larger post-synaptic densities as well as changes in the expression of vascular endothelial growth factor α (VEGF α). Within the periinfarct cortex, S1P is significantly increased compared to healthy brain tissue.
Conclusion: Besides its known neuroprotective effects in the acute phase of experimental stroke, the initiation of FTY720 treatment in the convalescence period has a positive impact on long-term functional outcome, probably mediated through reduced astrogliosis, a modulation in synaptic morphology and an increased expression of neurotrophic factors.
BACKGROUND: Systemic thrombolysis with recombinant tissue plasminogen activator (rt-PA) is the standard of acute stroke care. Its potential to increase the risk of secondary intracerebral hemorrhage, especially if administered late, has been ascribed to its proteolytic activity that has detrimental effects on blood-brain barrier (BBB) integrity after stroke. FTY720 has been shown to protect endothelial barriers in several disease models such as endotoxin-induced pulmonary edema and therefore is a promising candidate to counteract the deleterious effects of rt-PA. Besides that, every putative neuroprotectant that will be eventually forwarded into clinical trials should be tested in conjunction with rt-PA.
METHODS: We subjected C57Bl/6 mice to 3 h filament-induced tMCAO and postoperatively randomized them into four groups (n = 18/group) who received the following treatments directly prior to reperfusion: 1) vehicle-treatment, 2) FTY720 1 mg/kg i.p., 3) rt-PA 10 mg/kg i.v. or 4) FTY720 and rt-PA as a combination therapy. We measured functional neurological outcome, BBB disruption by quantification of EB extravasation and MMP-9 activity by gelatin zymography.
RESULTS: We observed a noticeable increase in mortality in the rt-PA/FTY720 cotreatment group (61%) as compared to the vehicle (33%), the FTY720 (39%) and the rt-PA group (44%). Overall, functional neurological outcome did not differ significantly between groups and FTY720 had no effect on rt-PA- and stroke-induced BBB disruption and MMP-9 activation.
CONCLUSIONS: Our data show that FTY720 does not improve functional outcome and BBB integrity in large hemispheric infarctions, neither alone nor in conjunction with rt-PA. These findings stand in contrast to a recently published study that showed beneficial effects of FTY720 in combination with thrombolysis in a thrombotic model of MCAO leading to circumscript cortical infarctions. They might therefore represent a caveat that the coadministration of these two drugs might lead to excess mortality in the setting of a severe stroke.