Refine
Document Type
- Article (1)
- Doctoral Thesis (1)
Language
- English (2)
Has Fulltext
- yes (2)
Is part of the Bibliography
- no (2)
Keywords
- Ecology (1)
- Global change (1)
- Kruger National Park (1)
- Plant physiology (1)
- Remote sensing (1)
- Savanna (1)
- Soil water retention curve (1)
- Species distribution modelling (1)
Institute
Soil water potential is crucial to plant transpiration and thus to carbon cycling and biosphere–atmosphere interactions, yet it is difficult to measure in the field. Volumetric and gravimetric water contents are easy and cheap to measure in the field, but can be a poor proxy of plant-available water. Soil water content can be transformed to water potential using soil moisture retention curves. We provide empirically derived soil moisture retention curves for seven soil types in the Kruger National Park, South Africa. Site-specific curves produced excellent estimates of soil water potential from soil water content values. Curves from soils derived from the same geological substrate were similar, potentially allowing for the use of one curve for basalt soils and another for granite soils. It is anticipated that this dataset will help hydrologists and ecophysiologists understand water dynamics, carbon cycling and biosphere–atmosphere interactions under current and changing climatic conditions in the region.
The timing and duration of leaf deployment strongly regulate earth-atmosphere interactions and biotic processes. Leaf dynamics therefore have major implications for life on earth, including the global energy balance, carbon and water cycles, feedbacks to climate, species extinction risk and agriculture. Evidence of shifts in the timing of leaf deployment and senescence (leaf phenology) as a result of climate change has been accumulating over the past decades, particularly in relation to spring phenology in the northern hemisphere. However, leaf phenological change in other parts of the world has received less attention. This thesis quantifies global phenological change over the past three decades using remotely sensed data. Phenological change was found to be widespread and severe, also in the southern hemisphere. While the detected change testifies of the phenological plasticity of many plant species, it is not clear if the duration of leaf deployment (leaf habit) is equally sensitive to environmental change. Since evergreen and deciduous leaf habits are often distinctly sorted along environmental gradients, ecologists have hypothesised that these patterns result from natural selection for an optimal leaf habit, under a given environmental regime. Such evolutionary convergence can be examined by testing if the physiological niche that is occupied by a particular leaf habit (evergreen or deciduous) is similar among regions with distinct evolutionary histories. Using a process-based model of plant growth and a constructed map of evergreen and deciduous vegetation, the physiological niche of leaf habits was quantified in four global biogeographic realms. Substantial niche overlap was found between the same leaf habit in different realms, suggesting evolutionary convergence of the physiological niche. This implies a sensitivity of leaf habit to environmental change, as environmental variables determine the geographic space where the physiological niche allows a positive carbon balance, and therefore occurrence of the leaf habit. Since the physiological niche consists of the integrated effects of physiological traits and trade-offs, environmental dependencies and leaf habit and phenology, an understanding of the carbon economy of individual plants requires decomposing the physiological niche into its components. Using empirical data on leaf phenology, leaf habit and physiological processes from woody species in a seasonally dry African savanna, a simple carbon balance model was parametrised. Carbon gain varied considerably between species as a result of substantial variation in leaf habit, leaf phenology and physiological traits. The multiple lines of evidence in this thesis therefore suggest that, while convergent selective forces may determine the dominant leaf habit in a particular environment, inter-specific variation is substantial, potentially as a consequence of historical contingencies or competitive interactions.