Refine
Document Type
- Article (1)
- Conference Proceeding (1)
Language
- English (2)
Has Fulltext
- yes (2)
Is part of the Bibliography
- no (2)
Institute
At nonzero temperature, it is expected that QCD undergoes a phase transition to a deconfined, chirally symmetric phase, the Quark-Gluon Plasma (QGP). I review what we expect theoretically about this possible transition, and what we have learned from heavy ion experiments at RHIC. I argue that while there are unambiguous signals for qualitatively new behavior at RHIC, versus experiments at lower energies, that in detail, no simple theoretical model can explain all salient features of the data.
Recently, an approximate SU(4) chiral spin-flavour symmetry was observed in multiplet patterns of QCD meson correlation functions, in a temperature range above the chiral crossover. This symmetry is larger than the chiral symmetry of massless QCD, and can only arise effectively when colour-electric quark-gluon interactions dynamically dominate the quantum effective action. At temperatures about three times the crossover temperature, these patterns disappear again, indicating the screening of colour-electric interactions, and the expected chiral symmetry is recovered. In this contribution we collect independent evidence for such an intermediate temperature range, based on screening masses and the pion spectral function. Both kinds of observables behave non-perturbatively in this window, with resonance-like peaks for the pion and its first excitation disappearing gradually with temperature. Using symmetry arguments and the known behaviour of screening masses at small densities, we discuss how this chiral spin symmetric band continues into the QCD phase diagram.