Refine
Document Type
- Preprint (14)
- Article (5)
- Conference Proceeding (1)
- Working Paper (1)
Language
- English (21)
Has Fulltext
- yes (21)
Is part of the Bibliography
- no (21)
Keywords
- Charge fluctuations (1)
- QGP (1)
- Relativistic heavy-ion collisions (1)
Institute
New results from the energy scan programme of NA49, in particular kaon production at 30 AGeV and phi production at 40 and 80 AGeV are presented. The K+/pi+ ratio shows a pronounced maximum at 30 AGeV; the kaon slope parameters are constant at SPS energies. Both findings support the scenario of a phase transition at about 30 AGeV beam energy. The phi/pi ratio increases smoothly with beam energy, showing an energy dependence similar to K-/pi-. The measured particle yields can be reproduced by a hadron gas model, with chemical freeze-out parameters on a smooth curve in the T-muB plane. The transverse spectra can be understood as resulting from a rapidly expanding, locally equilibrated source. No evidence for an earlier kinetic decoupling of heavy hyperons is found.
Results are presented from a search for the decays D0 -> K min pi plus and D0 bar -> K plus pi min in a sample of 3.8x10^6 central Pb-Pb events collected with a beam energy of 158A GeV by NA49 at the CERN SPS. No signal is observed. An upper limit on D0 production is derived and compared to predictions from several models.
Directed and elliptic flow of charged pions and protons in Pb + Pb collisions at 40 and 158 A GeV
(2003)
Directed and elliptic flow measurements for charged pions and protons are reported as a function of transverse momentum, rapidity, and centrality for 40 and 158A GeV Pb + Pb collisions as recorded by the NA49 detector. Both the standard method of correlating particles with an event plane, and the cumulant method of studying multiparticle correlations are used. In the standard method the directed flow is corrected for conservation of momentum. In the cumulant method elliptic flow is reconstructed from genuine 4, 6, and 8-particle correlations, showing the first unequivocal evidence for collective motion in A+A collisions at SPS energies.
System size and centrality dependence of the balance function in A + A collisions at √sNN = 17.2 GeV
(2004)
Electric charge correlations were studied for p+p, C+C, Si+Si and centrality selected Pb+Pb collisions at sqrt s_NN = 17.2$ GeV with the NA49 large acceptance detector at the CERN-SPS. In particular, long range pseudo-rapidity correlations of oppositely charged particles were measured using the Balance Function method. The width of the Balance Function decreases with increasing system size and centrality of the reactions. This decrease could be related to an increasing delay of hadronization in central Pb+Pb collisions.
System size dependence of multiplicity fluctuations of charged particles produced in nuclear collisions at 158 A GeV was studied in the NA49 CERN experiment. Results indicate a non-monotonic dependence of the scaled variance of the multiplicity distribution with a maximum for semi-peripheral Pb+Pb interactions with number of projectile participants of about 35. This effect is not observed in a string-hadronic model of nuclear collision HIJING.
The transverse mass mt distributions for deuterons and protons are measured in Pb+Pb reactions near midrapidity and in the range 0<mt–m<1.0 (1.5) GeV/c2 for minimum bias collisions at 158A GeV and for central collisions at 40 and 80 A GeV beam energies. The rapidity density dn/dy, inverse slope parameter T and mean transverse mass <mt> derived from mt distributions as well as the coalescence parameter B2 are studied as a function of the incident energy and the collision centrality. The deuteron mt spectra are significantly harder than those of protons, especially in central collisions. The coalescence factor B2 shows three systematic trends. First, it decreases strongly with increasing centrality reflecting an enlargement of the deuteron coalescence volume in central Pb+Pb collisions. Second, it increases with mt. Finally, B2 shows an increase with decreasing incident beam energy even within the SPS energy range. The results are discussed and compared to the predictions of models that include the collective expansion of the source created in Pb+Pb collisions.
The energy dependence of multiplicity fluctuations was studied for the most central Pb+Pb collisions at 20A, 30A, 40A, 80A and 158A GeV by the NA49 experiment at the CERN SPS. The multiplicity distribution for negatively and positively charged hadrons is significantly narrower than Poisson one for all energies. No significant structure in energy dependence of the scaled variance of multiplicity fluctuations is observed. The measured scaled variance is lower than the one predicted by the grand-canonical formulation of the hadron-resonance gas model. The results for scaled variance are in approximate agreement with the string-hadronic model UrQMD.
Results are presented on event-by-event fluctuations in transverse momentum of charged particles, produced at forward rapidities in p+p, C+C, Si+Si and Pb+Pb collisions at 158 AGeV. Three different characteristics are discussed: the average transverse momentum of the event, the Phi_pT fluctuation measure and two-particle transverse momentum correlations. In the kinematic region explored, the dynamical fluctuations are found to be small. However, a significant system size dependence of Phi_pT is observed, with the largest value measured in peripheral Pb+Pb interactions. The data are compared with predictions of several models. PACS numbers: 14.20.Jn, 13.75.Cs, 12.39.-x
Electric charge correlations were studied for p+p, C+C, Si+Si, and centrality selected Pb+Pb collisions at sqrt[sNN]=17.2 GeV with the NA49 large acceptance detector at the CERN SPS. In particular, long-range pseudorapidity correlations of oppositely charged particles were measured using the balance function method. The width of the balance function decreases with increasing system size and centrality of the reactions. This decrease could be related to an increasing delay of hadronization in central Pb+Pb collisions.
Evidence for an exotic S=-2, Q=-2 baryon resonance in proton-proton collisions at the CERN SPS
(2004)
Results of resonance searches in the Xi - pi -, Xi - pi +, Xi -bar+ pi -, and Xi -bar+ pi + invariant mass spectra in proton-proton collisions at sqrt[s]=17.2 GeV are presented. Evidence is shown for the existence of a narrow Xi - pi - baryon resonance with mass of 1.862±0.002 GeV/c2 and width below the detector resolution of about 0.018 GeV/c2. The significance is estimated to be above 4.2 sigma . This state is a candidate for the hypothetical exotic Xi --3/2 baryon with S=-2, I=3 / 2, and a quark content of (dsdsu-bar). At the same mass, a peak is observed in the Xi - pi + spectrum which is a candidate for the Xi 03/2 member of this isospin quartet with a quark content of (dsusd-bar). The corresponding antibaryon spectra also show enhancements at the same invariant mass.