Refine
Year of publication
- 2007 (2)
Document Type
- Article (2)
Language
- English (2)
Has Fulltext
- yes (2)
Is part of the Bibliography
- no (2)
Institute
- Medizin (2)
Poster presentation: The transcription factor NF-kappaB plays a central role in the development and maintenance of the central nervous system and its constitutive activation in neurons has been repeatedly reported. Previous work from our laboratories (poster presentation: Compartimentalized NF-kappaB activity in the axon initial segment) had revealed an intriguing clustering of activated IKKalpha/beta and other downstream elements of an activated NF-kappaB cascade (phospho-IkappaBalpha, phospho-p65(Ser536)) in the axon initial segment (AIS). Accumulation of certain voltage-gated sodium channels (Na(v)1.2), M-type potassium channels (KCNQ2) as well as cytoskeletal anchoring proteins (AnkyrinG) characterise the AIS. However, it is not yet clear how AIS-localized IKK gets activated and whether this can be connected to the constitutive activation of NF-kappaB. Long-term blockade of sodium channels with tetrodotoxin, potassium-channels with linopirdine or NMDA-receptors with MK-801 did not elicit any change upon the constitutive activation of the pathway. Strikingly, the occurrence of phosphorylated IkappaBalpha was even unaltered by 24 h of incubation with protein synthesis inhibitors. Others have reported that impairment of NF-kappaB inhibits neuritogenesis. In this line we observed that the early initiation of IkappaBalpha phosphorylation was susceptible to inhibition of IKK in DIV1–2 neurons. We therefore aim to identify the interaction partners of the activated IKK complex in the AIS. Proteomic methods such as co-immunoprecipitation analyses and mass-spectrometry will help us to identify the key players in the initiation of constitutive IKK phosphorylation and activation in neurons.
Poster presentation: The transcription factor NF-kappaB plays a pivotal role in the development and maintenance of the central nervous system and its constitutive activation in neurons has been previously reported. NF-kappaB is post-translationally activated upon phosphorylation of the IkappaBalpha inhibitory protein by the activated IkappaB kinase (IKKalpha/beta) and the subsequent degradation of IkappaBalpha by the proteasome. Recently, we had demonstrated an unexpected accumulation of three components of the NF-kappaB cascade in the axon initial segment (AIS): Activated IKK, phosphorylated IkappaBalpha and phosphorylated-p65(Ser536). These are all associated with detergent-insoluble cytoskeletal components of the AIS. We observed further compartimentalization as pIKKalpha/beta primarily associated with the membrane cytoskeleton, whereas pIkappaBalpha was sequestered to fasciculated microtubules. Colchicine-induced depolymerization of microtubules was associated with reduced sequestration of pIkappaBalpha in the AIS, which could be blocked by use of proteasome inhibitors like Mg-132 or Lactacystin. Concurrently, enhanced nuclear immunoreactivity for the NF-kappaB subunit p65 was noted. Using NF-kappaB-dependent reporter gene assays, a significant increase in NF-kappaB activity was observed after depolymerization of microtubules and this was inhibited by the microtubule-stabilizing drug paclitaxel. The use of transiently transfected, photoactivatable-GFP p65 fusion proteins will allow us to specifically analyse the compartimentalized signal transduction pathways in unique spatial and temporal resolution. Taken together, these observations provide strong evidence for compartmentalized activation of NF-kappaB in the AIS and modulation of neuronal NF-kappaB activity by microtubule dynamics.