Refine
Year of publication
Document Type
- Article (35)
- Contribution to a Periodical (1)
- Other (1)
- Preprint (1)
Has Fulltext
- yes (38)
Is part of the Bibliography
- no (38)
Keywords
- Biophysical chemistry (4)
- membrane proteins (4)
- Atomic force microscopy (3)
- MHC (3)
- Membrane proteins (3)
- antigen presentation (3)
- ABC transporter (2)
- ATPases (2)
- Brownian dynamics simulation (2)
- CRISPR/Cas9 (2)
Institute
- Biochemie und Chemie (34)
- Sonderforschungsbereiche / Forschungskollegs (19)
- Center for Membrane Proteomics (CMP) (8)
- Biochemie, Chemie und Pharmazie (3)
- Exzellenzcluster Makromolekulare Komplexe (3)
- Zentrum für Biomolekulare Magnetische Resonanz (BMRZ) (2)
- Biowissenschaften (1)
- Medizin (1)
- Physik (1)
- Präsidium (1)
Members of the ATP‐binding cassette (ABC) transporter superfamily translocate a broad spectrum of chemically diverse substrates. While their eponymous ATP‐binding cassette in the nucleotide‐binding domains (NBDs) is highly conserved, their transmembrane domains (TMDs) forming the translocation pathway exhibit distinct folds and topologies, suggesting that during evolution the ancient motor domains were combined with different transmembrane mechanical systems to orchestrate a variety of cellular processes. In recent years, it has become increasingly evident that the distinct TMD folds are best suited to categorize the multitude of ABC transporters. We therefore propose a new ABC transporter classification that is based on structural homology in the TMDs:
Live-cell labelling techniques to visualize proteins with minimal disturbance are important; however, the currently available methods are limited in their labelling efficiency, specificity and cell permeability. We describe high-throughput protein labelling facilitated by minimalistic probes delivered to mammalian cells by microfluidic cell squeezing. High-affinity and target-specific tracing of proteins in various subcellular compartments is demonstrated, culminating in photoinduced labelling within live cells. Both the fine-tuned delivery of subnanomolar concentrations and the minimal size of the probe allow for live-cell super-resolution imaging with very low background and nanometre precision. This method is fast in probe delivery (∼1,000,000 cells per second), versatile across cell types and can be readily transferred to a multitude of proteins. Moreover, the technique succeeds in combination with well-established methods to gain multiplexed labelling and has demonstrated potential to precisely trace target proteins, in live mammalian cells, by super-resolution microscopy.
Im Zuge der steigenden Bedeutung der Proteomforschung und der »Molekularisierung« der Medizin werden neue, effizientere Plattformen zur Untersuchung von Proteinen und deren Wechselwirkungen notwendig. Hier bietet die Nanotechnologie, eine Wissenschaft mit Ursprüngen in der Physik und der Halbleiterindustrie, attraktive Lösungsperspektiven. Ein Bereich der Forschung am Institut für Biochemie der Universität Frankfurt um Prof. Dr. Robert Tampé widmet sich den Aspekten der Nanotechnologie zur Entwicklung von Protein-Chips für die Proteomforschung und Erzeugung von Mustern im Kleinstformat.
Infektionen mit Herpesviren sind bereits seit der Antike bekannt. So beschrieb zum Beispiel schon Hippokrates in seinem »Corpus Hippocraticum« die sich auf der Haut ausbreitenden Herpes Simplex Läsionen und gab der Krankheit ihren bis heute gültigen Namen. Verbürgt ist auch, dass der römische Kaiser Tiberius vor etwa 2000 Jahren während einer auftretenden Herpes labialis-Epidemie das Küssen bei öffentlichen Zeremonien per Dekret verbat. Shakespeare war ebenfalls bestens vertraut mit den periodisch auftretenden Herpes-Bläschen; in seinem Werk »Romeo & Julia« spricht Mercutio zu Romeo: »O’er ladies lips, who straight on kisses dream, which oft the angry Mab with blisters plagues, ….« Doch erst in den 1960er Jahren erkannte man die virale Herkunft der Erkrankung.
Jeder Mensch kämpft täglich erfolgreich mit Krankheitserregern, ohne dass er sich der komplexen molekularen Vorgänge dabei bewusst wäre. Wie in einem Hollywood-Streifen geht es rasant zur Sache. Ist das Immunsystem angeschlagen oder trifft es auf starke Gegner, kann eine Infektion binnen weniger Tage außer Kontrolle geraten und lebensbedrohliche Reaktionen hervorrufen. Der menschliche Organismus benötigt eine effiziente Verteidigungsstrategie gegen die Eindringlinge und muss, ebenso wie der britische Geheimdienst im Bond-Film, in die Ausbildung geübter Agenten investieren, Agenten mit Doppel-Null-Status. Agenten wie James Bond.
Salt bridges in lipid bilayers play a decisive role in the dynamic assembly and downstream signaling of the natural killer and T-cell receptors. Here, we describe the identification of an inter-subunit salt bridge in the membrane within yet another key component of the immune system, the peptide-loading complex (PLC). The PLC regulates cell surface presentation of self-antigens and antigenic peptides via molecules of the major histocompatibility complex class I. We demonstrate that a single salt bridge in the membrane between the transporter associated with antigen processing TAP and the MHC I-specific chaperone tapasin is essential for the assembly of the PLC and for efficient MHC I antigen presentation. Molecular modeling and all-atom molecular dynamics simulations suggest an ionic lock-switch mechanism for the binding of TAP to tapasin, in which an unfavorable uncompensated charge in the ER-membrane is prevented through complex formation. Our findings not only deepen the understanding of the interaction network within the PLC, but also provide evidence for a general interaction principle of dynamic multiprotein membrane complexes in immunity.
Membrane-suspended nanopores in microchip arrays for stochastic transport recording and sensing
(2021)
The transport of nutrients, xenobiotics, and signaling molecules across biological membranes is essential for life. As gatekeepers of cells, membrane proteins and nanopores are key targets in pharmaceutical research and industry. Multiple techniques help in elucidating, utilizing, or mimicking the function of biological membrane-embedded nanodevices. In particular, the use of DNA origami to construct simple nanopores based on the predictable folding of nucleotides provides a promising direction for innovative sensing and sequencing approaches. Knowledge of translocation characteristics is crucial to link structural design with function. Here, we summarize recent developments and compare features of membrane-embedded nanopores with solid-state analogues. We also describe how their translocation properties are characterized by microchip systems. The recently developed silicon chips, comprising solid-state nanopores of 80 nm connecting femtoliter cavities in combination with vesicle spreading and formation of nanopore-suspended membranes, will pave the way to characterize translocation properties of nanopores and membrane proteins in high-throughput and at single-transporter resolution.
The loading of antigenic peptides onto major histocompatibility complex class I (MHC I) molecules is an essential step in the adaptive immune response against virally or malignantly transformed cells. The ER-resident peptide-loading complex (PLC) consists of the transporter associated with antigen processing (TAP1 and TAP2), assembled with the auxiliary factors tapasin and MHC I. Here, we demonstrated that the N-terminal extension of each TAP subunit represents an autonomous domain, named TMD0, which is correctly targeted to and inserted into the ER membrane. In the absence of coreTAP, each TMD0 recruits tapasin in a 1:1 stoichiometry. Although the TMD0s lack known ER retention/retrieval signals, they are localized to the ER membrane even in tapasin-deficient cells. We conclude that the TMD0s of TAP form autonomous interaction hubs linking antigen translocation into the ER with peptide loading onto MHC I, hence ensuring a major function in the integrity of the antigen-processing machinery.
Antibiotic treatment of tuberculosis (TB) is complex, lengthy, and can be associated with various adverse effects. As a result, patient compliance often is poor, thus further enhancing the risk of selecting multi-drug resistant bacteria. Macrophage mannose receptor (MMR)-positive alveolar macrophages (AM) constitute a niche in which Mycobacterium tuberculosis replicates and survives. Therefore, we encapsulated levofloxacin in lipid nanocarriers functionalized with fucosyl residues that interact with the MMR. Indeed, such nanocarriers preferentially targeted
MMR-positive myeloid cells, and in particular, AM. Intracellularly, fucosylated lipid nanocarriers favorably delivered their payload into endosomal compartments, where mycobacteria reside. In an in vitro setting using infected human primary macrophages as well as dendritic cells, the encapsulated antibiotic cleared the pathogen more efficiently than free levofloxacin. In conclusion, our results point towards carbohydrate-functionalized nanocarriers as a promising tool for improving TB treatment by targeted delivery of antibiotics.
Sandra Posch, Camilo Aponte-Santamaría, Richard Schwarzl, Andreas Karner, Matthias Radtke, Frauke Gräter, Tobias Obser, Gesa König, Maria A. Brehm, Hermann J. Gruber, Roland R. Netz, Carsten Baldauf, Reinhard Schneppenheim, Robert Tampé, Peter Hinterdorfer
Mutual A domain interactions in the force sensing protein von Willebrand factor
Journal of Structural Biology, Volume 197, Issue 1, January 2017, Pages 57-64. https://doi.org/10.1016/j.jsb.2016.04.012
We here give information for a deeper understanding of single molecule force spectroscopy (SMFS) data through the example of the blood protein von Willebrand factor (VWF). It is also shown, how fitting of rupture forces versus loading rate profiles in the molecular dynamics (MD) loading-rate range can be used to demonstrate the qualitative agreement between SMFS and MD simulations. The recently developed model by Bullerjahn, Sturm, and Kroy (BSK) was used for this demonstration. Further, Brownian dynamics (BD) simulations, which can be utilized to estimate the lifetimes of intramolecular VWF interactions under physiological shear, are described. For interpretation and discussion of the methods and data presented here, we would like to directly point the reader to the related research paper, “Mutual A domain interactions in the force sensing protein von Willebrand Factor” (Posch et al., 2016).