Refine
Language
- English (17)
Has Fulltext
- yes (17)
Is part of the Bibliography
- no (17)
Keywords
- Biochemistry (1)
- Biophysics (1)
- Chemical Physics (1)
- Computational Physics (1)
- Lipid transport protein (1)
- MET (1)
- Membrane and lipid biology (1)
- Mycoplasma (1)
- Protein homeostasis (1)
- cellular self-organization (1)
We present a method that enables the identification and analysis of conformational Markovian transition states from atomistic or coarse-grained molecular dynamics (MD) trajectories. Our algorithm is presented by using both analytical models and examples from MD simulations of the benchmark system helix-forming peptide Ala5, and of larger, biomedically important systems: the 15-lipoxygenase-2 enzyme (15-LOX-2), the epidermal growth factor receptor (EGFR) protein, and the Mga2 fungal transcription factor. The analysis of 15-LOX-2 uses data generated exclusively from biased umbrella sampling simulations carried out at the hybrid ab initio density functional theory (DFT) quantum mechanics/molecular mechanics (QM/MM) level of theory. In all cases, our method automatically identifies the corresponding transition states and metastable conformations in a variationally optimal way, with the input of a set of relevant coordinates, by accurately reproducing the intrinsic slowest relaxation rate of each system. Our approach offers a general yet easy-to-implement analysis method that provides unique insight into the molecular mechanism and the rare but crucial (i.e., rate-limiting) transition states occurring along conformational transition paths in complex dynamical systems such as molecular trajectories.
The plasma membrane (PM) is composed of a complex lipid mixture that forms heterogeneous membrane environments. Yet, how small-scale lipid organization controls physiological events at the PM remains largely unknown. Here, we show that ORP-related Osh lipid exchange proteins are critical for the synthesis of phosphatidylinositol (4,5)-bisphosphate [PI(4,5)P2], a key regulator of dynamic events at the PM. In real-time assays, we find that unsaturated phosphatidylserine (PS) and sterols, both Osh protein ligands, synergistically stimulate phosphatidylinositol 4-phosphate 5-kinase (PIP5K) activity. Biophysical FRET analyses suggest an unconventional co-distribution of unsaturated PS and phosphatidylinositol 4-phosphate (PI4P) species in sterol-containing membrane bilayers. Moreover, using in vivo imaging approaches and molecular dynamics simulations, we show that Osh protein-mediated unsaturated PI4P and PS membrane lipid organization is sensed by the PIP5K specificity loop. Thus, ORP family members create a nanoscale membrane lipid environment that drives PIP5K activity and PI(4,5)P2 synthesis that ultimately controls global PM organization and dynamics.
Structural rearrangements play a central role in the organization and function of complex biomolecular systems. In principle, Molecular Dynamics (MD) simulations enable us to investigate these thermally activated processes with an atomic level of resolution. In practice, an exponentially large fraction of computational resources must be invested to simulate thermal fluctuations in metastable states. Path sampling methods focus the computational power on sampling the rare transitions between states. One of their outstanding limitations is to efficiently generate paths that visit significantly different regions of the conformational space. To overcome this issue, we introduce a new algorithm for MD simulations that integrates machine learning and quantum computing. First, using functional integral methods, we derive a rigorous low-resolution spatially coarse-grained representation of the system’s dynamics, based on a small set of molecular configurations explored with machine learning. Then, we use a quantum annealer to sample the transition paths of this low-resolution theory. We provide a proof-of-concept application by simulating a benchmark conformational transition with all-atom resolution on the D-Wave quantum computer. By exploiting the unique features of quantum annealing, we generate uncorrelated trajectories at every iteration, thus addressing one of the challenges of path sampling. Once larger quantum machines will be available, the interplay between quantum and classical resources may emerge as a new paradigm of high-performance scientific computing. In this work, we provide a platform to implement this integrated scheme in the field of molecular simulations.
A key event in cellular physiology is the decision between membrane biogenesis and fat storage. Phosphatidic acid (PA) is an important intermediate at the branch point of these pathways and is continuously monitored by the transcriptional repressor Opi1 to orchestrate lipid metabolism. In this study, we report on the mechanism of membrane recognition by Opi1 and identify an amphipathic helix (AH) for selective binding of PA over phosphatidylserine (PS). The insertion of the AH into the membrane core renders Opi1 sensitive to the lipid acyl chain composition and provides a means to adjust membrane biogenesis. By rational design of the AH, we tune the membrane-binding properties of Opi1 and control its responsiveness in vivo. Using extensive molecular dynamics simulations, we identify two PA-selective three-finger grips that tightly bind the PA phosphate headgroup while interacting less intimately with PS. This work establishes lipid headgroup selectivity as a new feature in the family of AH-containing membrane property sensors.
A key event in cellular physiology is the decision between membrane biogenesis and fat storage. Phosphatidic acid (PA) is an important lipid intermediate and signaling lipid at the branch point of these pathways and constantly monitored by the transcriptional repressor Opi1 to orchestrate lipid metabolism. Here, we report on the mechanism of membrane recognition by Opi1 and identify an amphipathic helix (AH) for the selective binding to membranes containing PA over phosphatidylserine (PS). The insertion of the AH into the hydrophobic core of the membrane renders Opi1 sensitive to the lipid acyl chain composition as an important factor contributing to the regulation of membrane biogenesis. Based on these findings, we rationally designed the membrane binding properties of Opi1 to control its responsiveness in the physiological context. Using extensive molecular dynamics (MD) simulations, we identified two PA-selective three-finger grips that tightly bind the phosphate headgroup, while interacting less intimately and more transiently with PS. This work establishes lipid headgroup selectivity as a new feature in the family of AH-containing membrane property sensors.
The severity of the COVID-19 pandemic, caused by the SARS-CoV-2 coronavirus, calls for the urgent development of a vaccine. The primary immunological target is the SARS-CoV-2 spike (S) protein. S is exposed on the viral surface to mediate viral entry into the host cell. To identify possible antibody binding sites not shielded by glycans, we performed multi-microsecond molecular dynamics simulations of a 4.1 million atom system containing a patch of viral membrane with four full-length, fully glycosylated and palmitoylated S proteins. By mapping steric accessibility, structural rigidity, sequence conservation and generic antibody binding signatures, we recover known epitopes on S and reveal promising epitope candidates for vaccine development. We find that the extensive and inherently flexible glycan coat shields a surface area larger than expected from static structures, highlighting the importance of structural dynamics in epitope mapping.
The spike protein (S) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is required for cell entry and is the primary focus for vaccine development. In this study, we combined cryo–electron tomography, subtomogram averaging, and molecular dynamics simulations to structurally analyze S in situ. Compared with the recombinant S, the viral S was more heavily glycosylated and occurred mostly in the closed prefusion conformation. We show that the stalk domain of S contains three hinges, giving the head unexpected orientational freedom. We propose that the hinges allow S to scan the host cell surface, shielded from antibodies by an extensive glycan coat. The structure of native S contributes to our understanding of SARS-CoV-2 infection and potentially to the development of safe vaccines.
Abstract
The endoplasmic reticulum (ER) is a key organelle of membrane biogenesis and crucial for the folding of both membrane and secretory proteins. Sensors of the unfolded protein response (UPR) monitor the unfolded protein load in the ER and convey effector functions for maintaining ER homeostasis. Aberrant compositions of the ER membrane, referred to as lipid bilayer stress, are equally potent activators of the UPR. How the distinct signals from lipid bilayer stress and unfolded proteins are processed by the conserved UPR transducer Ire1 remains unknown. Here, we have generated a functional, cysteine-less variant of Ire1 and performed systematic cysteine crosslinking experiments in native membranes to establish its transmembrane architecture in signaling-active clusters. We show that the transmembrane helices of two neighboring Ire1 molecules adopt an X-shaped configuration independent of the primary cause for ER stress. This suggests that different forms of stress converge in a common, signaling-active transmembrane architecture of Ire1.
Summary
The endoplasmic reticulum (ER) is a hotspot of lipid biosynthesis and crucial for the folding of membrane and secretory proteins. The unfolded protein response (UPR) controls the size and folding capacity of the ER. The conserved UPR transducer Ire1 senses both unfolded proteins and aberrant lipid compositions to mount adaptive responses. Using a biochemical assay to study Ire1 in signaling-active clusters, Väth et al. provide evidence that the neighboring transmembrane helices of clustered Ire1 form an ‘X’ irrespectively of the primary cause of ER stress. Hence, different forms of ER stress converge in a common, signaling-active transmembrane architecture of Ire1.
The spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is required for cell entry and is the major focus for vaccine development. We combine cryo electron tomography, subtomogram averaging and molecular dynamics simulations to structurally analyze S in situ. Compared to recombinant S, the viral S is more heavily glycosylated and occurs predominantly in a closed pre-fusion conformation. We show that the stalk domain of S contains three hinges that give the globular domain unexpected orientational freedom. We propose that the hinges allow S to scan the host cell surface, shielded from antibodies by an extensive glycan coat. The structure of native S contributes to our understanding of SARS-CoV-2 infection and the development of safe vaccines. The large scale tomography data set of SARS-CoV-2 used for this study is therefore sufficient to resolve structural features to below 5 Ångstrom, and is publicly available at EMPIAR-10453.
Autophagosome biogenesis requires a localized perturbation of lipid membrane dynamics and a unique protein-lipid conjugate. Autophagy-related (ATG) proteins catalyze this biogenesis on cellular membranes, but the underlying molecular mechanism remains unclear. Focusing on the final step of the protein-lipid conjugation reaction, ATG8/LC3 lipidation, we show how membrane association of the conjugation machinery is organized and fine-tuned at the atomistic level. Amphipathic α-helices in ATG3 proteins (AHATG3) are found to have low hydrophobicity and to be less bulky. Molecular dynamics simulations reveal that AHATG3 regulates the dynamics and accessibility of the thioester bond of the ATG3∼LC3 conjugate to lipids, allowing covalent lipidation of LC3. Live cell imaging shows that the transient membrane association of ATG3 with autophagic membranes is governed by the less bulky- hydrophobic feature of AHATG3. Collectively, the unique properties of AHATG3 facilitate protein- lipid bilayer association leading to the remodeling of the lipid bilayer required for the formation of autophagosomes.