### Refine

#### Year of publication

- 2023 (3)

#### Document Type

- Preprint (3)

#### Language

- English (3)

#### Has Fulltext

- yes (3)

#### Is part of the Bibliography

- no (3)

#### Institute

- Physik (3)

Tidal deformability of fermion-boson stars: neutron stars admixed with ultralight dark matter
(2023)

In this work we investigate the tidal deformability of a neutron star admixed with dark matter, modeled as a massive, self-interacting, complex scalar field. We derive the equations to compute the tidal deformability of the full Einstein-Hilbert-Klein-Gordon system self-consistently, and probe the influence of the scalar field mass and self-interaction strength on the total mass and tidal properties of the combined system. We find that dark matter core-like configurations lead to more compact objects with smaller tidal deformability, and dark matter cloud-like configurations lead to larger tidal deformability. Electromagnetic observations of certain cloud-like configurations would appear to violate the Buchdahl limit. The self-interaction strength is found to have a significant effect on both mass and tidal deformability. We discuss observational constraints and the connection to anomalous detections. We also investigate how this model compares to those with an effective bosonic equation of state and find the interaction strength where they converge sufficiently.

Neutron star binaries and their associated gravitational wave signal facilitate precision tests of General Relativity. Any deviation of the detected gravitational waveform from General Relativity would therefore be a smoking gun signature of new physics, in the form of additional forces, dark matter particles, or extra gravitational degrees of freedom. To be able to probe new theories, precise knowledge of the expected waveform is required. In our work, we consider a generic setup by augmenting General Relativity with an additional, massive scalar field. We then compute the inspiral dynamics of a binary system by employing an effective field theoretical approach, while giving a detailed introduction to the computational framework. Finally, we derive the modified gravitational waveform at next-to-leading order. As a consequence of our model-agnostic approach, our results are readily adaptable to a plethora of new physics scenarios, including modified gravity theories and scalar dark matter models.

Tidal deformability of fermion-boson stars: neutron stars admixed with ultralight dark matter
(2023)