Refine
Document Type
- Article (2)
- Doctoral Thesis (1)
- Preprint (1)
Language
- English (4)
Has Fulltext
- yes (4)
Is part of the Bibliography
- no (4)
Keywords
- ATTO 390 (1)
- TICT (1)
- coumarin (1)
- fluorophore (1)
- photocage (1)
Institute
Decades of work have demonstrated that messenger RNAs (mRNAs) are localized and translated within neuronal dendrites and axons to provide proteins for remodeling and maintaining growth cones or synapses. It remains unknown, however, whether specific forms of plasticity differentially regulate the dynamics and translation of individual mRNA species. To address this, we targeted three individual synaptically localized mRNAs, CamkIIa, β-actin, Psd95, and used molecular beacons to track endogenous mRNA movements. We used reporters and CRISPR/Cas9 gene editing to track mRNA translation in cultured neurons. We found alterations in mRNA dynamic properties occurred during two forms of synaptic plasticity, long-term potentiation (cLTP) and depression (mGluR-LTD). Changes in mRNA dynamics following either form of plasticity resulted in an enrichment of mRNA in the vicinity of dendritic spines. Both the reporters and tagging of endogenous proteins revealed the transcript-specific stimulation of protein synthesis following cLTP or mGluR-LTD. As such, the plasticity-induced enrichment of mRNA near synapses could be uncoupled from its translational status. The enrichment of mRNA in the proximity of spines allows for localized signaling pathways to decode plasticity milieus and stimulate a specific translational profile, resulting in a customized remodeling of the synaptic proteome.
In the development of photolabile protecting groups, it is of high interest to selectively modify photochemical properties with structural changes as simple as possible. In this work, knowledge of fluorophore optimization was adopted and used to design new coumarin- based photocages. Photolysis efficiency was selectively modulated by inactivating competitive decay channels, such as twisted intramolecular charge transfer (TICT) or hydrogen-bonding, and the photolytic release of the neurotransmitter serotonin was demonstrated. Structural modifications inspired by the fluorophore ATTO 390 led to a significant increase in the uncaging cross section that can be further improved by the simple addition of a double bond. Ultrafast transient absorption spectroscopy gave insights into the underlying solvent-dependent photophysical dynamics. The chromophores presented here are excellently suited as new photocages in the visible wavelength range due to their simple synthesis and their superior photochemical properties.
Decades of work have demonstrated that mRNAs are localized and translated within neuronal dendrites and axons to provide proteins for remodeling and maintaining growth cones or synapses. It remains unknown, however, whether specific forms of plasticity differentially regulate the dynamics and translation of individual mRNA species. To address these issues, we targeted three individual synaptically-localized mRNAs, CamkIIa, Beta actin, Psd95, and used molecular beacons to track endogenous mRNA movements and reporters and Crispr-Cas9 gene editing to track their translation. We found widespread alterations in mRNA behavior during two forms of synaptic plasticity, long-term potentiation (LTP) and depression (LTD). Changes in mRNA dynamics following plasticity resulted in an enrichment of mRNA in the vicinity of dendritic spines. Both the reporters and tagging of endogenous proteins revealed the transcript-specific stimulation of protein synthesis following LTP or LTD. The plasticity-induced enrichment of mRNA near synapses could be uncoupled from its translational status. The enrichment of mRNA in the proximity of spines allows for localized signaling pathways to decode plasticity milieus and stimulate a specific translational profile, resulting in a customized remodeling of the synaptic proteome.
The most versatile tool for visualizing endogenous RNA is molecular beacons (MBs). MBs are modified oligonucleotides that consist of a stem-loop structure equipped with a fluorophore and a quencher at the opposite ends. They only give a fluorescent signal when hybridized to the target RNA. Here we present our recent efforts to enhance the spatiotemporal resolution of RNA visualization by refining MBs.
We first asked if we could refine MBs to visualize defined subcellular populations of RNA in living neurons. To achieve this, we utilize visible light-activatable Q-dye MBs to allow only a subcellular fraction to be activated. Here, the fluorophore at the 5’-end was linked to a second quencher via a photolabile coumarin protecting group. Therefore, the MB only gives a fluorescent signal, when activated with visible light and hybridized to the target. This architecture allowed local activation of a hybridized subpopulation in a defined area of the cell. Knowing the exact origin of the activated RNA, we were able to increase the available monitoring time for neuronal mRNA from several minutes (literature known MBs) to more than 14 hours.
We next asked if it would be possible to gain spatiotemporal control over where the MB hybridization events occur. Therefore, we developed photo-tethered MBs where two phosphates in the loop backbone are covalently linked to each other via two photocages. This prevents the MB from hybridization to the target RNA. Only when light is applied, the photo-tethers are cleaved, and the inherent hybridization function of the MB is activated. This architecture allowed us to control the hybridization of photo-tethered MBs in primary cultured neurons.