Refine
Document Type
- Article (5)
Has Fulltext
- yes (5)
Is part of the Bibliography
- no (5)
Keywords
- Acute kidney injury (1)
- Blood loss (1)
- Cancer detection (1)
- Colloids (1)
- HES (1)
- Hydroxyethyl starch (1)
- Multimodal imaging (1)
- Pseudo HE-images (1)
- Raman spectroscopy (1)
- Trauma (1)
Institute
- Biochemie und Chemie (3)
- Medizin (2)
- Georg-Speyer-Haus (1)
- MPI für Hirnforschung (1)
Background: Due to the steadily increasing number of cancer patients worldwide the early diagnosis and treatment of cancer is a major field of research. The diagnosis of cancer is mostly performed by an experienced pathologist via the visual inspection of histo-pathological stained tissue sections. To save valuable time, low quality cryosections are frequently analyzed with diagnostic accuracies that are below those of high quality embedded tissue sections. Thus, alternative means have to be found that enable for fast and accurate diagnosis as the basis of following clinical decision making.
Methods: In this contribution we will show that the combination of the three label-free non-linear imaging modalities CARS (coherent anti-Stokes Raman-scattering), TPEF (two-photon excited autofluorescence) and SHG (second harmonic generation) yields information that can be translated into computational hematoxylin and eosin (HE) images by multivariate statistics. Thereby, a computational HE stain is generated resulting in pseudo-HE overview images that allow for identification of suspicious regions. The latter are analyzed further by Raman-spectroscopy retrieving the tissue’s molecular fingerprint.
Results: The results suggest that the combination of non-linear multimodal imaging and Raman-spectroscopy possesses the potential as a precise and fast tool in routine histopathology.
Conclusions: As the key advantage, both optical methods are non-invasive enabling for further pathological investigations of the same tissue section, e.g. a direct comparison with the current pathological gold-standard.
GABARAP belongs to an evolutionary highly conserved gene family that has a fundamental role in autophagy. There is ample evidence for a crosstalk between autophagy and apoptosis as well as the immune response. However, the molecular details for these interactions are not fully characterized. Here, we report that the ablation of murine GABARAP, a member of the Atg8/LC3 family that is central to autophagosome formation, suppresses the incidence of tumor formation mediated by the carcinogen DMBA and results in an enhancement of the immune response through increased secretion of IL-1β, IL-6, IL-2 and IFN-γ from stimulated macrophages and lymphocytes. In contrast, TGF-β1 was significantly reduced in the serum of these knockout mice. Further, DMBA treatment of these GABARAP knockout mice reduced the cellularity of the spleen and the growth of mammary glands through the induction of apoptosis. Gene expression profiling of mammary glands revealed significantly elevated levels of Xaf1, an apoptotic inducer and tumor-suppressor gene, in knockout mice. Furthermore, DMBA treatment triggered the upregulation of pro-apoptotic (Bid, Apaf1, Bax), cell death (Tnfrsf10b, Ripk1) and cell cycle inhibitor (Cdkn1a, Cdkn2c) genes in the mammary glands. Finally, tumor growth of B16 melanoma cells after subcutaneous inoculation was inhibited in GABARAP-deficient mice. Together, these data provide strong evidence for the involvement of GABARAP in tumorigenesis in vivo by delaying cell death and its associated immune-related response.
Background: Trauma may be associated with significant to life-threatening blood loss, which in turn may increase the risk of complications and death, particularly in the absence of adequate treatment. Hydroxyethyl starch (HES) solutions are used for volume therapy to treat hypovolemia due to acute blood loss to maintain or re-establish hemodynamic stability with the ultimate goal to avoid organ hypoperfusion and cardiovascular collapse. The current study compares a 6% HES 130 solution (Volulyte 6%) versus an electrolyte solution (Ionolyte) for volume replacement therapy in adult patients with traumatic injuries, as requested by the European Medicines Agency to gain more insights into the safety and efficacy of HES in the setting of trauma care.
Methods: TETHYS is a pragmatic, prospective, randomized, controlled, double-blind, multicenter, multinational trial performed in two parallel groups. Eligible consenting adults ≥ 18 years, with an estimated blood loss of ≥ 500 ml, and in whom initial surgery is deemed necessary within 24 h after blunt or penetrating trauma, will be randomized to receive intravenous treatment at an individualized dose with either a 6% HES 130, or an electrolyte solution, for a maximum of 24 h or until reaching the maximum daily dose of 30 ml/kg body weight, whatever occurs first. Sample size is estimated as 175 patients per group, 350 patients total (α = 0.025 one-tailed, power 1–β = 0.8). Composite primary endpoint evaluated in an exploratory manner will be 90-day mortality and 90-day renal failure, defined as AKIN stage ≥ 2, RIFLE injury/failure stage, or use of renal replacement therapy (RRT) during the first 3 months. Secondary efficacy and safety endpoints are fluid administration and balance, changes in vital signs and hemodynamic status, changes in laboratory parameters including renal function, coagulation, and inflammation biomarkers, incidence of adverse events during treatment period, hospital, and intensive care unit (ICU) length of stay, fitness for ICU or hospital discharge, and duration of mechanical ventilation and/or RRT.
Discussion: This pragmatic study will increase the evidence on safety and efficacy of 6% HES 130 for treatment of hypovolemia secondary to acute blood loss in trauma patients.
Trial registration:Registered in EudraCT, No.: 2016-002176-27 (21 April 2017) and ClinicalTrials.gov, ID: NCT03338218 (09 November 2017).
The cis-trans-isomerism of the WITTIG hydrocarbon was investigated in solid state and solution by means of fluorescence spectroscopy. The fluorescence behavior of both isomers in 2-methyltetrahydrofurane was determined as a function of concentration, temperature, and wavelength of exciting radiation. Furthermore, irradiation experiments were undertaken with light of various wavelengths.
The results obtained are in agreement with the assumption that the WITTIG hydrocarbon behaves with regard to the cis-trans-isomerism like a 1,3-butadien derivative, i.e. a thermal but no photochemical cis-trans-isomerisation can be detected. The enthalpy difference between the two isomers was estimated to ΔΗ = 250 ± 50 cal/mole. It could be shown that the fluorescence of the cis-isomer is quenched by the trans-isomer. This quenching occurs probably according to the resonance energy transfer mechanism.