Refine
Language
- English (28)
Has Fulltext
- yes (28)
Is part of the Bibliography
- no (28)
Keywords
Institute
Dihadron angular correlations in d + Au collisions at √sNN = 200 GeV are reported as a function of the measured zero-degree calorimeter neutral energy and the forward charged hadron multiplicity in the Au-beam direction. A finite correlated yield is observed at large relative pseudorapidity (η) on the near side (i.e. relative azimuth φ ∼ 0). This correlated yield as a function of η appears to scale with the dominant, primarily jet-related, away-side (φ ∼ π) yield. The Fourier coefficients of the φ correlation, Vn = (cosnφ), have a strong η dependence. In addition, it is found that V1 is approximately inversely proportional to the mid-rapidity event multiplicity, while V2 is independent of it with similar magnitude in the forward (d-going) and backward (Au-going) directions.
Effect of event selection on jetlike correlation measurement in d+Au collisions at √sNN = 200 GeV
(2015)
Dihadron correlations are analyzed in √sNN = 200 GeV d + Au collisions classified by forward charged particle multiplicity and zero-degree neutral energy in the Au-beam direction. It is found that the jetlike correlated yield increases with the event multiplicity. After taking into account this dependence, the non-jet contribution on the away side is minimal, leaving little room for a back-to-back ridge in these collisions.
We present measurements of the differential cross sections of inclusive J/ψ meson production as a function of transverse momentum (pJ/ψT) using the μ+μ− and e+e− decay channels in proton+proton collisions at center-of-mass energies of 510 and 500 GeV, respectively, recorded by the STAR detector at the Relativistic Heavy Ion Collider. The measurement from the μ+μ− channel is for 0 <pJ/ψT< 9 GeV/c and rapidity range |yJ/ψ|< 0.4, and that from the e+e− channel is for 4 <pJ/ψT< 20 GeV/c and |yJ/ψ|< 1.0. The ψ(2S) to J/ψ ratio is also measured for 4 <pmesonT< 12 GeV/c through the e+e− decay channel. Model calculations, which incorporate different approaches toward the J/ψ production mechanism, are compared with experimental results and show reasonable agreement within uncertainties.
We report on the measurement of the Central Exclusive Production of charged particle pairs h+h− (h = π, K, p) with the STAR detector at RHIC in proton-proton collisions at √s = 200 GeV. The charged particle pairs produced in the reaction pp → p′ + h+h− + p′ are reconstructed from the tracks in the central detector and identified using the specific energy loss and the time of flight method, while the forward-scattered protons are measured in the Roman Pot system. Exclusivity of the event is guaranteed by requiring the transverse momentum balance of all four final-state particles. Differential cross sections are measured as functions of observables related to the central hadronic final state and to the forward-scattered protons. They are measured in a fiducial region corresponding to the acceptance of the STAR detector and determined by the central particles’ transverse momenta and pseudorapidities as well as by the forward-scattered protons’ momenta. This fiducial region roughly corresponds to the square of the four-momentum transfers at the proton vertices in the range 0.04 GeV2 < −t1, −t2 < 0.2 GeV2, invariant masses of the charged particle pairs up to a few GeV and pseudorapidities of the centrally-produced hadrons in the range |η| < 0.7. The measured cross sections are compared to phenomenological predictions based on the Double Pomeron Exchange (DPE) model. Structures observed in the mass spectra of π+π− and K+K− pairs are consistent with the DPE model, while angular distributions of pions suggest a dominant spin-0 contribution to π+π− production. For π+π− production, the fiducial cross section is extrapolated to the Lorentz-invariant region, which allows decomposition of the invariant mass spectrum into continuum and resonant contributions. The extrapolated cross section is well described by the continuum production and at least three resonances, the f0(980), f2(1270) and f0(1500), with a possible small contribution from the f0(1370). Fits to the extrapolated differential cross section as a function of t1 and t2 enable extraction of the exponential slope parameters in several bins of the invariant mass of π+π− pairs. These parameters are sensitive to the size of the interaction region.
Measurement of inclusive charged-particle jet production in Au+Au collisions at √sNN = 200 GeV
(2021)
The STAR Collaboration at the Relativistic Heavy Ion Collider reports the first measurement of inclusive jet production in peripheral and central Au+Au collisions at sNN−−−−√=200 GeV. Jets are reconstructed with the anti-kT algorithm using charged tracks with pseudorapidity |η|<1.0 and transverse momentum 0.2<pchT,jet<30 GeV/c, with jet resolution parameter R=0.2, 0.3, and 0.4. The large background yield uncorrelated with the jet signal is observed to be dominated by statistical phase space, consistent with a previous coincidence measurement. This background is suppressed by requiring a high-transverse-momentum (high-pT) leading hadron in accepted jet candidates. The bias imposed by this requirement is assessed, and the pT region in which the bias is small is identified. Inclusive charged-particle jet distributions are reported in peripheral and central Au+Au collisions for 5<pchT,jet<25 GeV/c and 5<pchT,jet<30 GeV/c, respectively. The charged-particle jet inclusive yield is suppressed for central Au+Au collisions, compared to both the peripheral Au+Au yield from this measurement and to the pp yield calculated using the PYTHIA event generator. The magnitude of the suppression is consistent with that of inclusive hadron production at high pT, and that of semi-inclusive recoil jet yield when expressed in terms of energy loss due to medium-induced energy transport. Comparison of inclusive charged-particle jet yields for different values of R exhibits no significant evidence for medium-induced broadening of the transverse jet profile for R<0.4 in central Au+Au collisions. The measured distributions are consistent with theoretical model calculations that incorporate jet quenching.
We report new STAR measurements of the single-spin asymmetries 𝐴𝐿 for 𝑊+ and 𝑊− bosons produced in polarized proton-proton collisions at √𝑠=510 GeV as a function of the decay-positron and decay-electron pseudorapidity. The data were obtained in 2013 and correspond to an integrated luminosity of 250 pb−1. The results are combined with previous results obtained with 86 pb−1. A comparison with theoretical expectations based on polarized lepton-nucleon deep-inelastic scattering and prior polarized proton-proton data suggests a difference between the ¯𝑢 and ¯𝑑 quark helicity distributions for 0.05<𝑥<0.25. In addition, we report new results for the double-spin asymmetries 𝐴𝐿𝐿 for 𝑊±, as well as 𝐴𝐿 for 𝑍/𝛾* production and subsequent decay into electron-positron pairs.
We report on the first measurements of J/ψ production at very low transverse momentum (pT< 0.2 GeV/c) in hadronic Au+Au collisions at √sNN = 200 GeV and U+U collisions at √sNN = 193 GeV. Remarkably, the inferred nuclear modification factor of J/ψ at mid-rapidity in Au+Au (U+U) collisions reaches about 24 (52) for pT< 0.05 GeV/c in the 60-80% collision centrality class. This noteworthy enhancement cannot be explained by hadronic production accompanied by cold and hot medium effects. In addition, the dN/dt distribution of J/ψ for the very low pT range is presented for the first time. The distribution is consistent with that expected from the Au nucleus and shows a hint of interference. Comparison of the measurements to theoretical calculations of coherent production shows that the excess yield can be described reasonably well and reveals a partial disruption of coherent production in semi-central collisions, perhaps due to the violent hadronic interactions. Incorporating theoretical calculations, the results strongly suggest that the dramatic enhancement of J/ψ yield observed at extremely low pT originates from coherent photon-nucleus interactions. In particular, coherently produced J/ψ's in violent hadronic collisions may provide a novel probe of the quark-gluon-plasma.
We report on the first measurements of J/ψ production at very low transverse momentum (pT< 0.2 GeV/c) in hadronic Au+Au collisions at √sNN = 200 GeV and U+U collisions at √sNN = 193 GeV. Remarkably, the inferred nuclear modification factor of J/ψ at mid-rapidity in Au+Au (U+U) collisions reaches about 24 (52) for pT< 0.05 GeV/c in the 60-80% collision centrality class. This noteworthy enhancement cannot be explained by hadronic production accompanied by cold and hot medium effects. In addition, the dN/dt distribution of J/ψ for the very low pT range is presented for the first time. The distribution is consistent with that expected from the Au nucleus and shows a hint of interference. Comparison of the measurements to theoretical calculations of coherent production shows that the excess yield can be described reasonably well and reveals a partial disruption of coherent production in semi-central collisions, perhaps due to the violent hadronic interactions. Incorporating theoretical calculations, the results strongly suggest that the dramatic enhancement of J/ψ yield observed at extremely low pT originates from coherent photon-nucleus interactions. In particular, coherently produced J/ψ's in violent hadronic collisions may provide a novel probe of the quark-gluon-plasma.
Rapidity-odd directed flow measurements at midrapidity are presented for Λ, Λ¯, K±, K0s and ϕ at sNN−−−−√= 7.7, 11.5, 14.5, 19.6, 27, 39, 62.4 and 200 GeV in Au+Au collisions recorded by the STAR detector at the Relativistic Heavy Ion Collider. These measurements greatly expand the scope of data available to constrain models with differing prescriptions for the equation of state of quantum chromodynamics. Results show good sensitivity for testing a picture where flow is assumed to be imposed before hadron formation and the observed particles are assumed to form via coalescence of constituent quarks. The pattern of departure from a coalescence-inspired sum-rule can be a valuable new tool for probing the collision dynamics.
The acceptance-corrected dielectron excess mass spectra, where the known hadronic sources have been subtracted from the inclusive dielectron mass spectra, are reported for the first time at mid-rapidity |yee|<1 in minimum-bias Au+Au collisions at sNN−−−−√ = 19.6 and 200 GeV. The excess mass spectra are consistently described by a model calculation with a broadened ρ spectral function for Mee<1.1 GeV/c2. The integrated dielectron excess yield at sNN−−−−√ = 19.6 GeV for 0.4<Mee<0.75 GeV/c2, normalized to the charged particle multiplicity at mid-rapidity, has a value similar to that in In+In collisions at sNN−−−−√ = 17.3 GeV. For sNN−−−−√ = 200 GeV, the normalized excess yield in central collisions is higher than that at sNN−−−−√ = 17.3 GeV and increases from peripheral to central collisions. These measurements indicate that the lifetime of the hot, dense medium created in central Au+Au collisions at sNN−−−−√ = 200 GeV is longer than those in peripheral collisions and at lower energies.