Refine
Year of publication
Document Type
- Article (19)
- Conference Proceeding (1)
- Part of Periodical (1)
Language
- English (21)
Has Fulltext
- yes (21)
Is part of the Bibliography
- no (21)
Keywords
- Anti-kaon–nucleon physics (1)
- Baryonic resonances (1)
- EEG (1)
- Freezeout (1)
- Heavy-ion reactions (1)
- Hyperons (1)
- Kaonic nuclei (1)
- Low energy QCD (1)
- Nucleus (1)
- Partial wave analysis (1)
Institute
The vector U bosons, or so-called “dark photons,” are one of the possible candidates for the dark matter mediators. They are supposed to interact with the standard matter via a “vector portal” due to the Uð1Þ − Uð1Þ0 symmetry group mixing which might make them visible in particle and heavy-ion experiments. While there is no confirmed observation of dark photons, the detailed analysis of different experimental data allows to estimate the upper limit for the kinetic mixing parameter ϵ2 depending on the mass MU of U bosons which is also unknown. In this study we present theoretical constraints on the upper limit of ϵ2ðMUÞ in the mass range MU ≤ 0.6 GeV from the comparison of the calculated dilepton spectra with the experimental data from the HADES collaboration at SIS18 energies where the dark photons are not observed. Our analysis is based on the microscopic Parton-Hadron-String Dynamics (PHSD) transport
approach which reproduces well the measured dilepton spectra in p þ p, p þ A and A þ A collisions. Additionally to the different dilepton channels originating from interactions and decays of ordinary matter particles (mesons and baryons), we incorporate the decay of hypothetical U bosons to dileptons, U → eþe−, where the U bosons themselves are produced by the Dalitz decay of pions π0 → γU, η mesons η → γU and Delta resonances Δ → NU. Our analysis can help to estimate the requested accuracy for future experimental searches of “light” dark photons by dilepton experiments.
We present measurements of exclusive ensuremathπ+,0 and η production in pp reactions at 1.25GeV and 2.2GeV beam kinetic energy in hadron and dielectron channels. In the case of π+ and π0 , high-statistics invariant-mass and angular distributions are obtained within the HADES acceptance as well as acceptance-corrected distributions, which are compared to a resonance model. The sensitivity of the data to the yield and production angular distribution of Δ (1232) and higher-lying baryon resonances is shown, and an improved parameterization is proposed. The extracted cross-sections are of special interest in the case of pp → pp η , since controversial data exist at 2.0GeV; we find \ensuremathσ=0.142±0.022 mb. Using the dielectron channels, the π0 and η Dalitz decay signals are reconstructed with yields fully consistent with the hadronic channels. The electron invariant masses and acceptance-corrected helicity angle distributions are found in good agreement with model predictions.
In this letter we report the first multi-differential measurement of correlated pion-proton pairs from 2 billion Au+Au collisions at sNN=2.42 GeV collected with HADES. In this energy regime the population of Δ(1232) resonances plays an important role in the way energy is distributed between intrinsic excitation energy and kinetic energy of the hadrons in the fireball. The triple differential d3N/dMπ±pdpTdy distributions of correlated π±p pairs have been determined by subtracting the πp combinatorial background using an iterative method. The invariant-mass distributions in the Δ(1232) mass region show strong deviations from a Breit-Wigner function with vacuum width and mass. The yield of correlated pion-proton pairs exhibits a complex isospin, rapidity and transverse-momentum dependence. In the invariant mass range 1.1<Minv(GeV/c2)<1.4, the yield is found to be similar for π+p and π−p pairs, and to follow a power law 〈Apart〉α, where 〈Apart〉 is the mean number of participating nucleons. The exponent α depends strongly on the pair transverse momentum (pT) while its pT-integrated and charge-averaged value is α=1.5±0.08st±0.2sy.
We present the results of two-pion production in tagged quasi-free np collisions at a deutron incident beam energy of 1.25 GeV/c measured with the High-Acceptance Di-Electron Spectrometer (HADES) installed at GSI. The specific acceptance of HADES allowed for the first time to obtain high-precision data on π+π− and π−π0 production in np collisions in a region corresponding to large transverse momenta of the secondary particles. The obtained differential cross section data provide strong constraints on the production mechanisms and on the various baryon resonance contributions (∆∆, N(1440), N(1520), ∆(1600)). The invariant mass and angular distributions from the np → npπ+π −and np → ppπ−π0 reactions are compared with different theoretical model predictions.
We have developed a versatile software package for the simulation of di-electron production in pp and dp collisions at moderate beam kinetic energies (1-2GeV). Particular attention has been paid to incorporate different descriptions of the Dalitz decay Δ rightarrow Ne + e - via a common interface. In addition, suitable parameterizations for the virtual bremsstrahlung process NN rightarrow NNe + e - based on one-boson exchange models have been implemented. Such simulation tools with high flexibility of the framework are important for the interpretation of the di-electron data taken with the HADES spectrometer and demonstrates the wide applicability within the field of nuclear and hadronic physics.
We present first data on sub-threshold production of Ks0 mesons and Λ hyperons in Au+Au collisions at sNN=2.4 GeV. We observe an universal 〈Apart〉 scaling of hadrons containing strangeness, independent of their corresponding production thresholds. Comparing the yields, their 〈Apart〉 scaling, and the shapes of the rapidity and the pt spectra to state-of-the-art transport model (UrQMD, HSD, IQMD) predictions, we find that none of them can simultaneously describe these observables with reasonable χ2 values.
We investigate identical pion HBT intensity interferometry in central Au+Au collisions at 1.23A GeV. High-statistics π−π− and π+π+ data are measured with HADES at SIS18/GSI. The radius parameters, derived from the correlation function depending on relative momenta in the longitudinally comoving system and parametrized as three-dimensional Gaussian distribution, are studied as function of transverse momentum. A substantial charge-sign difference of the source radii is found, particularly pronounced at low transverse momentum. The extracted source parameters agree well with a smooth extrapolation of the center-of-mass energy dependence established at higher energies, extending the corresponding excitation functions down towards a very low energy.
Pluto is a Monte-Carlo event generator designed for hadronic interactions from Pion production threshold to intermediate energies of a few GeV per nucleon, as well as for studies of heavy ion reactions. The package is entirely based on ROOT, without the need of additional packages, and uses the embedded C++ interpreter of ROOT to control the event production. The generation of events based on a single reaction chain and the storage of the resulting particle objects can be done with a few lines of a ROOT-macro. However, the complete control of the package can be taken over by the steering macro and user-defined models may be added without a recompilation of the framework. Multi-reaction cocktails can be facilitated as well using either mass-dependent or user-defined static branching ratios. The included physics uses resonance production with mass-dependent Breit-Wigner sampling. The calculation of partial and total widths for resonances producing unstable particles is performed recursively in a coupled-channel approach. Here, particular attention is paid to the electromagnetic decays, motivated by the physics program of HADES. The thermal model supports 2-component thermal distributions, longitudinal broadening, radial blast, direct and elliptic flow, and impact-parameter sampled multiplicities. The interface allows angular distribution models (e.g. for the primary meson emission) to be attached by the user as well as descriptions of multi-particle correlations using decay chain templates. The exchange of mass sampling or momentum generation models is also possible. The first feature allows for consistent coupled-channel calculations, needed for a correct description of hadronic interactions. For elementary reactions, angular distribution models for selected channels are already part of the framework, based on parameterizations of existing data. This report gives an overview of the design of the package, the included models and the user interface.
Transcranial alternating-current stimulation (tACS) in the frequency range of 1–100 Hz has come to be used routinely in electroencephalogram (EEG) studies of brain function through entrainment of neuronal oscillations. It turned out, however, to be highly non-trivial to remove the strong stimulation signal, including its harmonic and non-harmonic distortions, as well as various induced higher-order artifacts from the EEG data recorded during the stimulation. In this paper, we discuss some of the problems encountered and present methodological approaches aimed at overcoming them. To illustrate the mechanisms of artifact induction and the proposed removal strategies, we use data obtained with the help of a schematic demonstrator setup as well as human-subject data.
In March 2019 the HADES experiment recorded 14 billion Ag+Ag collisions at √sNN = 2.55 GeV as a part of the FAIR phase-0 physics program. In this contribution, we present and investigate our capabilities to reconstruct and analyze weakly decaying strange hadrons and hypernuclei emerging from these collisions. The focus is put on measuring the mean lifetimes of these particles.