Refine
Document Type
- Article (7)
Language
- English (7)
Has Fulltext
- yes (7)
Is part of the Bibliography
- no (7)
Keywords
- X-rays (1)
- excitation (1)
- highly-charged ions (1)
- relativistic collisions (1)
- storage rings (1)
Institute
The production of Ξ(1321)− and Ξ¯¯¯¯(1321)+ hyperons in inelastic p+p interactions is studied in a fixed target experiment at a beam momentum of 158 GeV/c. Double differential distributions in rapidity y and transverse momentum pT are obtained from a sample of 33M inelastic events. They allow to extrapolate the spectra to full phase space and to determine the mean multiplicity of both Ξ− and Ξ¯¯¯¯+. The rapidity and transverse momentum spectra are compared to transport model predictions. The Ξ− mean multiplicity in inelastic p+p interactions at 158 GeV/c is used to quantify the strangeness enhancement in A+A collisions at the same centre-of-mass energy per nucleon pair.
A measurement of charged hadron pair correlations in two-dimensional ηφ space is presented. The analysis is based on total 30 million central Be + Be collisions observed in the NA61/SHINE detector at the CERN SPS for incident beam momenta of 19A, 30A, 40A, 75A, and 150A GeV/c. Measurements were carried out for unlike-sign and like-sign charge hadron pairs independently. The C(η, φ) correlation functions were compared with results from a similar analysis on p + p interactions at similar beam momenta per nucleon. General trends of the backto-back correlations are similar in central Be + Be collisions and p + p interactions, but are suppressed in magnitude due to the increased combinatorial background. Predictions from the Epos and UrQMD models are compared to the measurements. Evolution of an enhancement around (η, φ) = (0, 0) with incident energy is observed in central Be + Be collisions. It is not predicted by both models and almost non-existing in proton–proton collisions at the same momentum per nucleon.
The physics goal of the strong interaction program of the NA61/SHINE experiment at the CERN Super Proton Synchrotron (SPS) is to study the phase diagram of hadronic matter by a scan of particle production in collisions of nuclei with various sizes at a set of energies covering the SPS energy range. This paper presents differential inclusive spectra of transverse momentum, transverse mass and rapidity of π− mesons produced in central 40Ar+45Sc collisions at beam momenta of 13A, 19A, 30A, 40A, 75A and 150A Ge V /c. Energy and system size dependence of parameters of these distributions – mean transverse mass, the inverse slope parameter of transverse mass spectra, width of the rapidity distribution and mean multiplicity – are presented and discussed. Furthermore, the dependence of the ratio of the mean number of produced pions to the mean number of wounded nucleons on the collision energy was derived. The results are compared to predictions of several models.
his Erratum replaces incorrect plots shown in Fig. 7 with the corrected ones. In the publication, the NA57 [1] ratios of Ξ− and Ξ¯¯¯¯+ to the number of wounded nucleons at ⟨NW⟩=349 by mistake were plotted at the wrong values. The ratios were calculated and plotted by mistake using ⟨NW⟩=249.
The correct normalization does not change the conclusions of the paper. The correctly normalized results are presented in Fig. 7.
Measurements of the π±, K±, and proton double differential yields emitted from the surface of the 90-cm-long carbon target (T2K replica) were performed for the incoming 31 GeV/c protons with the NA61/SHINE spectrometer at the CERN SPS using data collected during 2010 run. The double differential π± yields were measured with increased precision compared to the previously published NA61/SHINE results, while the K± and proton yields were obtained for the first time. A strategy for dealing with the dependence of the results on the incoming proton beam profile is proposed. The purpose of these measurements is to reduce significantly the (anti)neutrino flux uncertainty in the T2K long-baseline neutrino experiment by constraining the production of (anti)neutrino ancestors coming from the T2K target.
We present measurements of ρ0, ω and K∗0 spectra in π−+ C production interactions at 158 GeV / c and ρ0 spectra at 350 GeV / c using the NA61/SHINE spectrometer at the CERN SPS. Spectra are presented as a function of the Feynman’s variable xF in the range 0<xF<1 and 0<xF<0.5 for 158 and 350 GeV / c respectively. Furthermore, we show comparisons with previous measurements and predictions of several hadronic interaction models. These measurements are essential for a better understanding of hadronic shower development and for improving the modeling of cosmic ray air showers.
In this paper, we present an experimental and theoretical study of excitation processes for the heaviest stable helium-like ion, that is, He-like uranium occurring in relativistic collisions with hydrogen and argon targets. In particular, we concentrate on angular distributions of the characteristic Kα radiation following the K → L excitation of He-like uranium. We pay special attention to the magnetic sub-level population of the excited 1s2lj states, which is directly related to the angular distribution of the characteristic Kα radiation. We show that the experimental data can be well described by calculations taking into account the excitation by the target nucleus as well as by the target electrons. Moreover, we demonstrate for the first time an important influence of the electron-impact excitation process on the angular distributions of the Kα radiation produced by excitation of He-like uranium in collisions with different targets.