Refine
Language
- English (4)
Has Fulltext
- yes (4)
Is part of the Bibliography
- no (4)
Keywords
- Autism spectrum disorder (1)
- Brain asymmetry (1)
- Hemispheric specialization (1)
- Heterogeneity (1)
- Language delay (1)
- Normative modeling (1)
Institute
- Medizin (4)
Background Reward processing has been proposed to underpin atypical social behavior, a core feature of autism spectrum disorder (ASD). However, previous neuroimaging studies have yielded inconsistent results regarding the specificity of atypicalities for social rewards in ASD. Utilizing a large sample, we aimed to assess altered reward processing in response to reward type (social, monetary) and reward phase (anticipation, delivery) in ASD.
Methods Functional magnetic resonance imaging during social and monetary reward anticipation and delivery was performed in 212 individuals with ASD (7.6-30.5 years) and 181 typically developing (TD) participants (7.6-30.8 years).
Results Across social and monetary reward anticipation, whole-brain analyses (p<0.05, family-wise error-corrected) showed hypoactivation of the right ventral striatum (VS) in ASD. Further, region of interest (ROI) analysis across both reward types yielded hypoactivation in ASD in both the left and right VS. Across delivery of social and monetary reward, hyperactivation of the VS in individuals with ASD did not survive correction for multiple comparisons. Reward type by diagnostic group interactions, and a dimensional analysis of autism trait scores were not significant during anticipation or delivery. Levels of attention-deficit/hyperactivity disorder (ADHD) symptoms did not affect reward processing in ASD.
Conclusions Our results do not support current theories linking atypical social interaction in ASD to specific alterations in processing of social rewards. Instead, they point towards a generalized hypoactivity of VS in ASD during anticipation of both social and monetary rewards. We suggest that this indicates attenuated subjective reward value in ASD independent of social content and ADHD symptoms.
Social-communication (SC) and restricted repetitive behaviors (RRB) are autism diagnostic symptom domains. SC and RRB severity can markedly differ within and between individuals and may be underpinned by different neural circuitry and genetic mechanisms. Modeling SC-RRB balance could help identify how neural circuitry and genetic mechanisms map onto such phenotypic heterogeneity. Here we developed a phenotypic stratification model that makes highly accurate (97-99%) out-of-sample SC=RRB, SC>RRB, and RRB>SC subtype predictions. Applying this model to resting state fMRI data from the EU-AIMS LEAP dataset (n=509), we find that while the phenotypic subtypes share many commonalities in terms of intrinsic functional connectivity, they also show replicable differences within some networks compared to a typically-developing group (TD). Specifically, the somatomotor network is hypoconnected with perisylvian circuitry in SC>RRB and visual association circuitry in SC=RRB. The SC=RRB subtype show hyperconnectivity between medial motor and anterior salience circuitry. Genes that are highly expressed within these networks show a differential enrichment pattern with known autism-associated genes, indicating that such circuits are affected by differing autism-associated genomic mechanisms. These results suggest that SC-RRB imbalance subtypes share many commonalities, but also express subtle differences in functional neural circuitry and the genomic underpinnings behind such circuitry.
Background: Autism Spectrum Disorder (henceforth ‘autism’) is a highly heterogeneous neurodevelopmental condition with few effective treatments for core and associated features. To make progress we need to both identify and validate neural markers that help to parse heterogeneity to tailor therapies to specific neurobiological profiles. Atypical hemispheric lateralization is a stable feature across studies in autism, however its potential of lateralization as a neural stratification marker has not been widely examined.
Methods: In order to dissect heterogeneity in lateralization in autism, we used the large EU-AIMS Longitudinal European Autism Project dataset comprising 352 individuals with autism and 233 neurotypical (NT) controls as well as a replication dataset from ABIDE (513 autism, 691 NT) using a promising approach that moves beyond mean-group comparisons. We derived grey matter voxelwise laterality values for each subject and modelled individual deviations from the normative pattern of brain laterality across age using normative modeling.
Results: Results showed that individuals with autism had highly individualized patterns of both extreme right- and leftward deviations, particularly in language-, motor- and visuospatial regions, associated with symptom severity. Language delay (LD) explained most variance in extreme rightward patterns, whereas core autism symptom severity explained most variance in extreme leftward patterns. Follow-up analyses showed that a stepwise pattern emerged with individuals with autism with LD showing more pronounced rightward deviations than autism individuals without LD.
Conclusion: Our analyses corroborate the need for novel (dimensional) approaches to delineate the heterogeneous neuroanatomy in autism, and indicate atypical lateralization may constitute a neurophenotype for clinically meaningful stratification in autism.
Background: Autism spectrum disorder (“autism”) is a highly heterogeneous neurodevelopmental condition with few effective treatments for core and associated features. To make progress we need to both identify and validate neural markers that help to parse heterogeneity to tailor therapies to specific neurobiological profiles. Atypical hemispheric lateralization is a stable feature across studies in autism, but its potential as a neural stratification marker has not been widely examined. Methods: In order to dissect heterogeneity in lateralization in autism, we used the large EU-AIMS (European Autism Interventions—A Multicentre Study for Developing New Medications) Longitudinal European Autism Project dataset comprising 352 individuals with autism and 233 neurotypical control subjects as well as a replication dataset from ABIDE (Autism Brain Imaging Data Exchange) (513 individuals with autism, 691 neurotypical subjects) using a promising approach that moves beyond mean group comparisons. We derived gray matter voxelwise laterality values for each subject and modeled individual deviations from the normative pattern of brain laterality across age using normative modeling. Results: Individuals with autism had highly individualized patterns of both extreme right- and leftward deviations, particularly in language, motor, and visuospatial regions, associated with symptom severity. Language delay explained most variance in extreme rightward patterns, whereas core autism symptom severity explained most variance in extreme leftward patterns. Follow-up analyses showed that a stepwise pattern emerged, with individuals with autism with language delay showing more pronounced rightward deviations than individuals with autism without language delay. Conclusions: Our analyses corroborate the need for novel (dimensional) approaches to delineate the heterogeneous neuroanatomy in autism and indicate that atypical lateralization may constitute a neurophenotype for clinically meaningful stratification in autism.