### Refine

#### Year of publication

#### Document Type

- Preprint (37)
- Article (35)
- Contribution to a Periodical (1)

#### Has Fulltext

- yes (73)

#### Is part of the Bibliography

- no (73)

#### Keywords

- density functional theory (4)
- α-RuCl3 (3)
- electronic band structure (2)
- electronic transport (2)
- p-n junction (2)
- photoelectron spectroscopy (2)
- scanning tunneling microscopy (2)
- transition-metal oxides (2)
- (F)EBID (1)
- 2D vdW magnets (1)

#### Institute

The rapid spread of the Coronavirus (COVID-19) confronts policy makers with the problem of measuring the effectiveness of containment strategies, balancing public health considerations with the economic costs of social distancing measures. We introduce a modified epidemic model that we name the controlled-SIR model, in which the disease reproduction rate evolves dynamically in response to political and societal reactions. An analytic solution is presented. The model reproduces official COVID-19 cases counts of a large number of regions and countries that surpassed the first peak of the outbreak. A single unbiased feedback parameter is extracted from field data and used to formulate an index that measures the efficiency of containment strategies (the CEI index). CEI values for a range of countries are given. For two variants of the controlled-SIR model, detailed estimates of the total medical and socio-economic costs are evaluated over the entire course of the epidemic. Costs comprise medical care cost, the economic cost of social distancing, as well as the economic value of lives saved. Under plausible parameters, strict measures fare better than a hands-off policy. Strategies based on current case numbers lead to substantially higher total costs than strategies based on the overall history of the epidemic.

Predicting the cumulative medical load of COVID-19 outbreaks after the peak in daily fatalities
(2021)

The distinct ways the COVID-19 pandemic has been unfolding in different countries and regions suggest that local societal and governmental structures play an important role not only for the baseline infection rate, but also for short and long-term reactions to the outbreak. We propose to investigate the question of how societies as a whole, and governments in particular, modulate the dynamics of a novel epidemic using a generalization of the SIR model, the reactive SIR (short-term and long-term reaction) model. We posit that containment measures are equivalent to a feedback between the status of the outbreak and the reproduction factor. Short-term reaction to an outbreak corresponds in this framework to the reaction of governments and individuals to daily cases and fatalities. The reaction to the cumulative number of cases or deaths, and not to daily numbers, is captured in contrast by long-term reaction. We present the exact phase space solution of the controlled SIR model and use it to quantify containment policies for a large number of countries in terms of short and long-term control parameters. We find increased contributions of long-term control for countries and regions in which the outbreak was suppressed substantially together with a strong correlation between the strength of societal and governmental policies and the time needed to contain COVID-19 outbreaks. Furthermore, for numerous countries and regions we identified a predictive relation between the number of fatalities within a fixed period before and after the peak of daily fatality counts, which allows to gauge the cumulative medical load of COVID-19 outbreaks that should be expected after the peak. These results suggest that the proposed model is applicable not only for understanding the outbreak dynamics, but also for predicting future cases and fatalities once the effectiveness of outbreak suppression policies is established with sufficient certainty. Finally, we provide a web app (https://itp.uni-frankfurt.de/covid-19/) with tools for visualising the phase space representation of real-world COVID-19 data and for exporting the preprocessed data for further analysis.

Recent experimental findings have reported the presence of unconventional charge orders in the enlarged (2 × 2) unit-cell of kagome metals AV3Sb5 (A = K, Rb, Cs) and hinted towards specific topological signatures. Motivated by these discoveries, we investigate the types of topological phases that can be realized in such kagome superlattices. In this context, we employ a recently introduced statistical method capable of constructing topological models for any generic lattice. By analyzing large data sets generated from symmetry-guided distributions of randomized tight-binding parameters, and labeled with the corresponding topological index, we extract physically meaningful information. We illustrate the possible real-space manifestations of charge and bond modulations and associated flux patterns for different topological classes, and discuss their relation to present theoretical predictions and experimental signatures for the AV3Sb5 family. Simultaneously, we predict higher-order topological phases that may be realized by appropriately manipulating the currently known systems.

Electron beam-induced deposition with tungsten hexacarbonyl W(CO)6 as precursors leads to granular deposits with varying compositions of tungsten, carbon and oxygen. Depending on the deposition conditions, the deposits are insulating or metallic. We employ an evolutionary algorithm to predict the crystal structures starting from a series of chemical compositions that were determined experimentally. We show that this method leads to better structures than structural relaxation based on estimated initial structures. We approximate the expected amorphous structures by reasonably large unit cells that can accommodate local structural environments that resemble the true amorphous structure. Our predicted structures show an insulator-to-metal transition close to the experimental composition at which this transition is actually observed and they also allow comparison with experimental electron diffraction patterns.

Motivated by recent experimental suggestions of charge-order-driven ferroelectricity in organic charge-transfer salts, such as κ-(BEDT-TTF)2Cu[N(CN)2]Cl, we investigate magnetic and charge-ordered phases that emerge in an extended two-orbital Hubbard model on the anisotropic triangular lattice at 3/4 filling. This model takes into account the presence of two organic BEDT-TTF molecules, which form a dimer on each site of the lattice, and includes short-range intramolecular and intermolecular interactions and hoppings. By using variational wave functions and quantum Monte Carlo techniques, we find two polar states with charge disproportionation inside the dimer, hinting to ferroelectricity. These charge-ordered insulating phases are stabilized in the strongly correlated limit and their actual charge pattern is determined by the relative strength of intradimer to interdimer couplings. Our results suggest that ferroelectricity is not driven by magnetism, since these polar phases can be stabilized also without antiferromagnetic order and provide a possible microscopic explanation of the experimental observations. In addition, a conventional dimer-Mott state (with uniform density and antiferromagnetic order) and a nonpolar charge-ordered state (with charge-rich and charge-poor dimers forming a checkerboard pattern) can be stabilized in the strong-coupling regime. Finally, when electron–electron interactions are weak, metallic states appear, with either uniform charge distribution or a peculiar 12-site periodicity that generates honeycomb-like charge order.

One of the most challenging problems in solid state systems is the microscopic analysis of electronic correlations. A paramount minimal model that encodes correlation effects is the Hubbard Hamiltonian, which—regardless of its simplicity—is exactly solvable only in a few limiting cases and approximate many-body methods are required for its solution. In this review, an overview on the non-perturbative two-particle self-consistent method (TPSC), which was originally introduced to describe the electronic properties of the single-band Hubbard model, is presented. A detailed derivation of the multi-orbital generalization of TPSC is introduced here and particular features of the method on exemplary interacting models in comparison to dynamical mean-field theory results are discussed.

Electronic states with non-trivial topology host a number of novel phenomena with potential for revolutionizing information technology. The quantum anomalous Hall effect provides spin-polarized dissipation-free transport of electrons, while the quantum spin Hall effect in combination with superconductivity has been proposed as the basis for realizing decoherence-free quantum computing. We introduce a new strategy for realizing these effects, namely by hole and electron doping kagome lattice Mott insulators through, for instance, chemical substitution. As an example, we apply this new approach to the natural mineral herbertsmithite. We prove the feasibility of the proposed modifications by performing ab-initio density functional theory calculations and demonstrate the occurrence of the predicted effects using realistic models. Our results herald a new family of quantum anomalous Hall and quantum spin Hall insulators at affordable energy/temperature scales based on kagome lattices of transition metal ions.

We present experimental results and theoretical simulations of the adsorption behavior of the metal–organic precursor Co2(CO)8 on SiO2 surfaces after application of two different pretreatment steps, namely by air plasma cleaning or a focused electron beam pre-irradiation. We observe a spontaneous dissociation of the precursor molecules as well as autodeposition of cobalt on the pretreated SiO2 surfaces. We also find that the differences in metal content and relative stability of these deposits depend on the pretreatment conditions of the substrate. Transport measurements of these deposits are also presented. We are led to assume that the degree of passivation of the SiO2 surface by hydroxyl groups is an important controlling factor in the dissociation process. Our calculations of various slab settings, using dispersion-corrected density functional theory, support this assumption. We observe physisorption of the precursor molecule on a fully hydroxylated SiO2 surface (untreated surface) and chemisorption on a partially hydroxylated SiO2 surface (pretreated surface) with a spontaneous dissociation of the precursor molecule. In view of these calculations, we discuss the origin of this dissociation and the subsequent autocatalysis.

he family of cubic noncentrosymmetric 3-4-3 compounds has become a fertile ground for the discovery of novel correlated metallic and insulating phases. Here, we report the synthesis of a new heavy fermion compound, Ce3Bi4Ni3. It is an isoelectronic analog of the prototypical Kondo insulator Ce3Bi4Pt3 and of the recently discovered Weyl-Kondo semimetal Ce3Bi4Pd3. In contrast to the volume-preserving Pt-Pd substitution, structural and chemical analyses reveal a positive chemical pressure effect in Ce3Bi4Ni3 relative to its heavier counterparts. Based on the results of electrical resistivity, Hall effect, magnetic susceptibility, and specific heat measurements, we identify an energy gap of 65–70 meV, about eight times larger than that in Ce3Bi4Pt3 and about 45 times larger than that of the Kondo-insulating background hosting the Weyl nodes in Ce3Bi4Pd3. We show that this gap as well as other physical properties do not evolve monotonically with increasing atomic number, i.e., in the sequence Ce3Bi4Ni3−Ce3Bi4Pd3−Ce3Bi4Pt3, but instead with increasing partial electronic density of states of the 𝑑 orbitals at the Fermi energy. This work opens the possibility to investigate the conditions under which topological states develop in this series of strongly correlated 3-4-3 materials.