Refine
Year of publication
Document Type
- Article (15)
Language
- English (15)
Has Fulltext
- yes (15)
Is part of the Bibliography
- no (15)
Keywords
- Cryptochrome 1a (2)
- Magnetic compass (2)
- avian magnetic compass (2)
- cryptochrome 1a (2)
- magnetic compass (2)
- Activated Cry1a (1)
- Animal flight (1)
- Animal navigation (1)
- Binoculars (1)
- Bird flight (1)
Institute
Oscillating magnetic field disrupts magnetic orientation in Zebra finches, Taeniopygia guttata
(2009)
Background Zebra finches can be trained to use the geomagnetic field as a directional cue for short distance orientation. The physical mechanisms underlying the primary processes of magnetoreception are, however, largely unknown. Two hypotheses of how birds perceive magnetic information are mainly discussed, one dealing with modulation of radical pair processes in retinal structures, the other assuming that iron deposits in the upper beak of the birds are involved. Oscillating magnetic fields in the MHz range disturb radical pair mechanisms but do not affect magnetic particles. Thus, application of such oscillating fields in behavioral experiments can be used as a diagnostic tool to decide between the two alternatives. Methods In a setup that eliminates all directional cues except the geomagnetic field zebra finches were trained to search for food in the magnetic north/south axis. The birds were then tested for orientation performance in two magnetic conditions. In condition 1 the horizontal component of the geomagnetic field was shifted by 90 degrees using a helmholtz coil. In condition 2 a high frequently oscillating field (1.156 MHz) was applied in addition to the shifted field. Another group of birds was trained to solve the orientation task, but with visual landmarks as directional cue. The birds were then tested for their orientation performance in the same magnetic conditions as applied for the first experiment. Results The zebra finches could be trained successfully to orient in the geomagnetic field for food search in the north/south axis. They were also well oriented in test condition 1, with the magnetic field shifted horizontally by 90 degrees. In contrast, when the oscillating field was added the directional choices during food search were randomly distributed. Birds that were trained to visually guided orientation showed no difference of orientation performance in the two magnetic conditions.
Background The Radical Pair model proposes that magnetoreception is a light-dependent process. Under low monochromatic light from the short-wavelength part of the visual spectrum, migratory birds show orientation in their migratory direction. Under monochromatic light of higher intensity, however, they showed unusual preferences in other directions or axial preferences. To determine whether or not these responses are still controlled by the respective light regimes, European robins, Erithacus rubecula, were tested under UV, Blue, Turquoise and Green light at increasing intensities, with orientation in migratory direction serving as a criterion whether or not magnetoreception works in the normal way. Results Under low light with a quantal flux of 8 times 10 to 15 power quanta s-1 m-2, the birds were well oriented in their seasonally appropriate migratory direction under 424 nm Blue, 502 nm Turquoise and 565 nm Green light, indicating unimpaired magnetoreception. Under 373 nm UV of the same quantal flux, they were not oriented in migratory direction, showing a preference of the east-west axis instead, but they showed excellent orientation in migratory direction under UV of lower intensity. Intensities of above 36 times 10 to 15 power quanta s-1 m-2 of Blue, Turquoise and Green light elicited a variety of responses: disorientation, headings along the east-west axis, headings along the north-south axis or 'fixed' direction tendencies. These responses changed as the intensity was increased from 36 times 10 to the 15 power quanta s-1 m-2 to 54 and 72 times 10 to 15 power quanta s-1 m-2. Conclusion The specific manifestation of responses in directions other than migratory direction clearly depends on the ambient light regime. This implies that although mechanisms normally providing magnetic compass information seem disrupted, processes that are activated by light still control the behavior. It suggests complex interactions between different types of receptors, magnetic and visual. The nature of the receptors involved and details of their connections are not yet known; however, a role of the color cones in the processes mediating magnetic input is suggested.
Background: The Radical-Pair-Model postulates that the reception of magnetic compass directions in birds is based on spin-chemical reactions in specialized photopigments in the eye, with cryptochromes discussed as candidate molecules. But so far, the exact subcellular characterization of these molecules in the retina remained unknown. Methodology/Principal Findings: We here describe the localization of cryptochrome 1a (Cry1a) in the retina of European robins, Erithacus rubecula, and domestic chickens, Gallus gallus, two species that have been shown to use the magnetic field for compass orientation. In both species, Cry1a is present exclusively in the ultraviolet/violet (UV/V) cones that are distributed across the entire retina. Electron microscopy shows Cry1a in ordered bands along the membrane discs of the outer segment, and cell fractionation reveals Cry1a in the membrane fraction, suggesting the possibility that Cry1a is anchored along membranes. Conclusions/Significance: We provide first structural evidence that Cry1a occurs within a sensory structure arranged in a way that fulfils essential requirements of the Radical-Pair-Model. Our findings, identifying the UV/V-cones as probable magnetoreceptors, support the assumption that Cry1a is indeed the receptor molecule mediating information on magnetic directions, and thus provide the Radical-Pair-Model with a profound histological background.
Background: European robins, Erithacus rubecula, show two types of directional responses to the magnetic field: (1) compass orientation that is based on radical pair processes and lateralized in favor of the right eye and (2) so-called 'fixed direction' responses that originate in the magnetite-based receptors in the upper beak. Both responses are light-dependent. Lateralization of the 'fixed direction' responses would suggest an interaction between the two magnetoreception systems. Results: Robins were tested with either the right or the left eye covered or with both eyes uncovered for their orientation under different light conditions. With 502 nm turquoise light, the birds showed normal compass orientation, whereas they displayed an easterly 'fixed direction' response under a combination of 502 nm turquoise with 590 nm yellow light. Monocularly right-eyed birds with their left eye covered were oriented just as they were binocularly as controls: under turquoise in their northerly migratory direction, under turquoise-and-yellow towards east. The response of monocularly left-eyed birds differed: under turquoise light, they were disoriented, reflecting a lateralization of the magnetic compass system in favor of the right eye, whereas they continued to head eastward under turquoise-and-yellow light. Conclusion: 'Fixed direction' responses are not lateralized. Hence the interactions between the magnetite-receptors in the beak and the visual system do not seem to involve the magnetoreception system based on radical pair processes, but rather other, non-lateralized components of the visual system.
In European Robins, Erithacus rubecula, the magnetic compass is lateralized in favor of the right eye/left hemisphere of the brain. This lateralization develops during the first winter and initially shows a great plasticity. During the first spring migration, it can be temporarily removed by covering the right eye. In the present paper, we used the migratory orientation of robins to analyze the circumstances under which the lateralization can be undone. Already a period of 1½ h being monocularly left-eyed before tests began proved sufficient to restore the ability to use the left eye for orientation, but this effect was rather short-lived, as lateralization recurred again within the next 1½ h. Interpretable magnetic information mediated by the left eye was necessary for removing the lateralization. In addition, monocularly, the left eye seeing robins could adjust to magnetic intensities outside the normal functional window, but this ability was not transferred to the “right-eye system”. Our results make it clear that asymmetry of magnetic compass perception is amenable to short-term changes, depending on lateralized stimulation. This could mean that the left hemispheric dominance for the analysis of magnetic compass information depends on lateralized interhemispheric interactions that in young birds can swiftly be altered by environmental effects.
The Radical Pair Model proposes that the avian magnetic compass is based on spin-chemical processes: since the ratio between the two spin states singlet and triplet of radical pairs depends on their alignment in the magnetic field, it can provide information on magnetic directions. Cryptochromes, blue light-absorbing flavoproteins, with flavin adenine dinucleotide as chromophore, are suggested as molecules forming the radical pairs underlying magnetoreception. When activated by light, cryptochromes undergo a redox cycle, in the course of which radical pairs are generated during photo-reduction as well as during light-independent re-oxidation. This raised the question as to which radical pair is crucial for mediating magnetic directions. Here, we present the results from behavioural experiments with intermittent light and magnetic field pulses that clearly show that magnetoreception is possible in the dark interval, pointing to the radical pair formed during flavin re-oxidation. This differs from the mechanism considered for cryptochrome signalling the presence of light and rules out most current models of an avian magnetic compass based on the radical pair generated during photo-reduction. Using the radical pair formed during re-oxidation may represent a specific adaptation of the avian magnetic compass.
Cryptochromes, blue-light absorbing proteins involved in the circadian clock, have been proposed to be the receptor molecules of the avian magnetic compass. In birds, several cryptochromes occur: Cryptochrome 2, Cryptochrome 4 and two splice products of Cryptochrome 1, Cry1a and Cry1b. With an antibody not distinguishing between the two splice products, Cryptochrome 1 had been detected in the retinal ganglion cells of garden warblers during migration. A recent study located Cry1a in the outer segments of UV/V-cones in the retina of domestic chickens and European robins, another migratory species. Here we report the presence of cryptochrome 1b (eCry1b) in retinal ganglion cells and displaced ganglion cells of European Robins, Erithacus rubecula. Immuno histochemistry at the light microscopic and electron microscopic level showed eCry1b in the cell plasma, free in the cytosol as well as bound to membranes. This is supported by immuno blotting. However, this applies only to robins in the migratory state. After the end of the migratory phase, the amount of eCry1b was markedly reduced and hardly detectable. In robins, the amount of eCry1b in the retinal ganglion cells varies with season: it appears to be strongly expressed only during the migratory period when the birds show nocturnal migratory restlessness. Since the avian magnetic compass does not seem to be restricted to the migratory phase, this seasonal variation makes a role of eCry1b in magnetoreception rather unlikely. Rather, it could be involved in physiological processes controlling migratory restlessness and thus enabling birds to perform their nocturnal flights.
The radical pair model proposes that the avian magnetic compass is based on radical pair processes in the eye, with cryptochrome, a flavoprotein, suggested as receptor molecule. Cryptochrome 1a (Cry1a) is localized at the discs of the outer segments of the UV/violet cones of European robins and chickens. Here, we show the activation characteristics of a bird cryptochrome in vivo under natural conditions. We exposed chickens for 30 min to different light regimes and analysed the amount of Cry1a labelled with an antiserum against an epitope at the C-terminus of this protein. The staining after exposure to sunlight and to darkness indicated that the antiserum labels only an illuminated, activated form of Cry1a. Exposure to narrow-bandwidth lights of various wavelengths revealed activated Cry1a at UV, blue and turquoise light. With green and yellow, the amount of activated Cry1a was reduced, and with red, as in the dark, no activated Cry1a was labelled. Activated Cry1a is thus found at all those wavelengths at which birds can orient using their magnetic inclination compass, supporting the role of Cry1a as receptor molecule. The observation that activated Cry1a and well-oriented behaviour occur at 565 nm green light, a wavelength not absorbed by the fully oxidized form of cryptochrome, suggests that a state other than the previously suggested Trp/FAD radical pair formed during photoreduction is crucial for detecting magnetic directions.
The magnetic compass of a migratory bird, the European robin (Erithacus rubecula), was shown to be lateralized in favour of the right eye/left brain hemisphere. However, this seems to be a property of the avian magnetic compass that is not present from the beginning, but develops only as the birds grow older. During first migration in autumn, juvenile robins can orient by their magnetic compass with their right as well as with their left eye. In the following spring, however, the magnetic compass is already lateralized, but this lateralization is still flexible: it could be removed by covering the right eye for 6 h. During the following autumn migration, the lateralization becomes more strongly fixed, with a 6 h occlusion of the right eye no longer having an effect. This change from a bilateral to a lateralized magnetic compass appears to be a maturation process, the first such case known so far in birds. Because both eyes mediate identical information about the geomagnetic field, brain asymmetry for the magnetic compass could increase efficiency by setting the other hemisphere free for other processes.
The magnetic field of the Earth provides animals with various kinds of information. Its use as a compass was discovered in the mid-1960s in birds, when it was first met with considerable skepticism, because it initially proved difficult to obtain evidence for magnetic sensitivity by conditioning experiments. Meanwhile, a magnetic compass was found to be widespread. It has now been demonstrated in members of all vertebrate classes, in mollusks and several arthropod species, in crustaceans as well as in insects. The use of the geomagnetic field as a ‘map’ for determining position, although already considered in the nineteenth century, was demonstrated by magnetically simulating displacements only after 2000, namely when animals, tested in the magnetic field of a distant site, responded as if they were physically displaced to that site and compensated for the displacement. Another use of the magnetic field is that as a ‘sign post’ or trigger: specific magnetic conditions elicit spontaneous responses that are helpful when animals reach the regions where these magnetic characteristics occur. Altogether, the geomagnetic field is a widely used valuable source of navigational information for mobile animals.