Refine
Year of publication
Language
- English (14)
Has Fulltext
- yes (14)
Is part of the Bibliography
- no (14)
Keywords
- nuclear magnetic resonance spectroscopy (2)
- ABC transporter (1)
- ABC transporters (1)
- Biophysical chemistry (1)
- COVID-19 (1)
- Dimethyl maleic anhydride (1)
- Enzyme mechanisms (1)
- LILBID-MS (1)
- Membrane protein complex (1)
- Membrane proteins (1)
ABC transporters fulfill diverse physiological functions in different cellularlocalizations ranging from the plasma membrane to intracellular membranouscompartments. Several ABC transporters have been spotted in the endolyso-somal system, which consists of endosomes, autophagosomes, lysosomes, andlysosome-related organelles. In this review, we present an overview of lysoso-mal ABC transporters including ABCA2, ABCA3, ABCA5, ABCB6,ABCB9, and ABCD4, discussing their trafficking routes, putative substrates,potential physiological functions, and associated diseases. In addition, weoffer a critical evaluation of the literature linking ABC transporters to lyso-somal drug sequestration, examining pitfalls associated with in vitro modelsof drug resistance.
The ATP-binding cassette transporter TAPL translocates polypeptides from the cytosol into the lysosomal lumen. TAPL can be divided into two functional units: coreTAPL, active in ATP-dependent peptide translocation, and the N-terminal membrane spanning domain, TMD0, responsible for cellular localization and interaction with the lysosomal associated membrane proteins LAMP-1 and LAMP-2. Although the structure and function of ABC transporters were intensively analyzed in the past, the knowledge about accessory membrane embedded domains is limited. Therefore, we expressed the TMD0 of TAPL via a cell-free expression system and confirmed its correct folding by NMR and interaction studies. In cell as well as cell-free expressed TMD0 forms oligomers, which were assigned as dimers by PELDOR spectroscopy and static light scattering. By NMR spectroscopy of uniformly and selectively isotope labeled TMD0 we performed a complete backbone and partial side chain assignment. Accordingly, TMD0 has a four transmembrane helix topology with a short helical segment in a lysosomal loop. The topology of TMD0 was confirmed by paramagnetic relaxation enhancement with paramagnetic stearic acid as well as by nuclear Overhauser effects with c6-DHPC and cross-peaks with water.
The lysosomal polypeptide transporter TAPL belongs to the superfamily of ATP-binding cassette transporters. TAPL forms a homodimeric transport complex, which translocates oligo- and polypeptides into the lumen of lysosomes driven by ATP hydrolysis. Although the structure and the function of ABC transporters were intensively studied in the past, details about the single steps of the transport cycle are still elusive. Therefore, we analyzed the coupling of peptide binding, transport and ATP hydrolysis for different substrate sizes. Although longer and shorter peptides bind with the same affinity and are transported with identical Km values, they differ significantly in their transport rates. This difference can be attributed to a higher activation energy for the longer peptide. TAPL shows a basal ATPase activity, which is inhibited in the presence of longer peptides. Uncoupling between ATP hydrolysis and peptide transport increases with peptide length. Remarkably, also the type of nucleotide determines the uncoupling. While GTP is hydrolyzed as good as ATP, peptide transport is significantly reduced. In conclusion, TAPL does not differentiate between transport substrates in the binding process but during the following steps in the transport cycle, whereas, on the other hand, not only the coupling efficiency but also the activation energy varies depending on the size of peptide substrate.
Although intrinsically disordered proteins or protein domains (IDPs or IDD) are less abundant in bacteria than in eukaryotes, their presence in pathogenic bacterial proteins is important for protein-protein interactions. The protein tyrosine kinase A (PtkA) from Mycobacterium tuberculosis possesses an 80-residue disordered region (IDDPtkA ) of unknown function, located N-terminally to the well-folded kinase core domain. Here, we characterize the conformation of IDDPtkA under varying biophysical conditions and phosphorylation using NMR-spectroscopy. Our results confirm that the N-terminal domain of PtkA exists as an IDD at physiological pH. Furthermore, phosphorylation of IDDPtkA increases the activity of PtkA. Our findings will complement future approaches in understanding molecular mechanisms of key proteins in pathogenic virulence.
The loading of antigenic peptides onto major histocompatibility complex class I (MHC I) molecules is an essential step in the adaptive immune response against virally or malignantly transformed cells. The ER-resident peptide-loading complex (PLC) consists of the transporter associated with antigen processing (TAP1 and TAP2), assembled with the auxiliary factors tapasin and MHC I. Here, we demonstrated that the N-terminal extension of each TAP subunit represents an autonomous domain, named TMD0, which is correctly targeted to and inserted into the ER membrane. In the absence of coreTAP, each TMD0 recruits tapasin in a 1:1 stoichiometry. Although the TMD0s lack known ER retention/retrieval signals, they are localized to the ER membrane even in tapasin-deficient cells. We conclude that the TMD0s of TAP form autonomous interaction hubs linking antigen translocation into the ER with peptide loading onto MHC I, hence ensuring a major function in the integrity of the antigen-processing machinery.
Living matter is defined by metastability, implying a tightly balanced synthesis and turnover of cellular components. The first step of eukaryotic protein degradation via the ubiquitin-proteasome system (UPS) leads to peptides, which are subsequently degraded to single amino acids by an armada of proteases. A small fraction of peptides, however, escapes further cytosolic destruction and is transported by ATP-binding cassette (ABC) transporters into the endoplasmic reticulum (ER) and lysosomes. The ER-resident heterodimeric transporter associated with antigen processing (TAP) is a crucial component in adaptive immunity for the transport and loading of peptides onto major histocompatibility complex class I (MHC I) molecules. Although the function of the lysosomal resident homodimeric TAPL-like (TAPL) remains, until today, only loosely defined, an involvement in immune defense is anticipated since it is highly expressed in dendritic cells and macrophages. Here, we compare the gene organization and the function of single domains of both peptide transporters. We highlight the structural organization, the modes of substrate binding and translocation as well as physiological functions of both organellar transporters.
Introduction: Interferon alpha (IFNα) is routinely used in the clinical practice for adjuvant systemic melanoma therapy. Understanding the molecular mechanism of IFNα effects and prediction of response in the IFNα therapy regime allows initiation and continuation of IFNα treatment for responder and exclusion of non-responder to avoid therapy inefficacy and side-effects. The transporter protein associated with antigen processing-1 (TAP1) is part of the MHC class I peptide-loading complex, and important for antigen presentation in tumor and antigen presenting cells. In the context of personalized medicine, we address this potential biomarker TAP1 as a target of IFNα signalling.
Results: We could show that IFNα upregulates TAP1 expression in peripheral blood mononuclear cells (PBMCs) of patients with malignant melanoma receiving adjuvant high-dose immunotherapy. IFNα also induced expression of TAP1 in mouse blood and tumor tissue and suppressed the formation of melanoma metastasis in an in vivo B16 tumor model. Besides its expression, TAP binding affinity and transport activity is induced by IFNα in human monocytic THP1 cells. Furthermore, our data revealed that IFNα clearly activates phosphorylation of STAT1 and STAT3 in THP1 and A375 melanoma cells. Inhibition of Janus kinases abrogates the IFNα-induced TAP1 expression. These results suggest that the JAK/STAT pathway is a crucial mediator for TAP1 expression elicited by IFNα treatment.
Conclusion: We suppose that silencing of TAP1 expression provides tumor cells with a mechanism to escape cytotoxic T-lymphocyte recognition. The observed benefit of IFNα treatment could be mediated by the shown dual effect of TAP1 upregulation in antigen presenting cells on the one hand, and of TAP1 upregulation in ‘silent’ metastatic melanoma cells on the other hand. In conclusion, this work contributes to a better understanding of the mode of action of IFNα which is essential to identify markers to predict, assess and monitor therapeutic response of IFNα treatment in the future.
Methanogenic archaea share one ion gradient forming reaction in their energy metabolism catalyzed by the membrane-spanning multisubunit complex N5-methyl-tetrahydromethanopterin: coenzyme M methyltransferase (MtrABCDEFGH or simply Mtr). In this reaction the methyl group transfer from methyl-tetrahydromethanopterin to coenzyme M mediated by cobalamin is coupled with the vectorial translocation of Na+ across the cytoplasmic membrane. No detailed structural and mechanistic data are reported about this process. In the present work we describe a procedure to provide a highly pure and homogenous Mtr complex on the basis of a selective removal of the only soluble subunit MtrH with the membrane perturbing agent dimethyl maleic anhydride and a subsequent two-step chromatographic purification. A molecular mass determination of the Mtr complex by laser induced liquid bead ion desorption mass spectrometry (LILBID-MS) and size exclusion chromatography coupled with multi-angle light scattering (SEC-MALS) resulted in a (MtrABCDEFG)3 heterotrimeric complex of ca. 430 kDa with both techniques. Taking into account that the membrane protein complex contains various firmly bound small molecules, predominantly detergent molecules, the stoichiometry of the subunits is most likely 1:1. A schematic model for the subunit arrangement within the MtrABCDEFG protomer was deduced from the mass of Mtr subcomplexes obtained by harsh IR-laser LILBID-MS.
The highly infectious disease COVID-19 caused by the Betacoronavirus SARS-CoV-2 poses a severe threat to humanity and demands the redirection of scientific efforts and criteria to organized research projects. The international COVID19-NMR consortium seeks to provide such new approaches by gathering scientific expertise worldwide. In particular, making available viral proteins and RNAs will pave the way to understanding the SARS-CoV-2 molecular components in detail. The research in COVID19-NMR and the resources provided through the consortium are fully disclosed to accelerate access and exploitation. NMR investigations of the viral molecular components are designated to provide the essential basis for further work, including macromolecular interaction studies and high-throughput drug screening. Here, we present the extensive catalog of a holistic SARS-CoV-2 protein preparation approach based on the consortium’s collective efforts. We provide protocols for the large-scale production of more than 80% of all SARS-CoV-2 proteins or essential parts of them. Several of the proteins were produced in more than one laboratory, demonstrating the high interoperability between NMR groups worldwide. For the majority of proteins, we can produce isotope-labeled samples of HSQC-grade. Together with several NMR chemical shift assignments made publicly available on covid19-nmr.com, we here provide highly valuable resources for the production of SARS-CoV-2 proteins in isotope-labeled form.
Salt bridges in lipid bilayers play a decisive role in the dynamic assembly and downstream signaling of the natural killer and T-cell receptors. Here, we describe the identification of an inter-subunit salt bridge in the membrane within yet another key component of the immune system, the peptide-loading complex (PLC). The PLC regulates cell surface presentation of self-antigens and antigenic peptides via molecules of the major histocompatibility complex class I. We demonstrate that a single salt bridge in the membrane between the transporter associated with antigen processing TAP and the MHC I-specific chaperone tapasin is essential for the assembly of the PLC and for efficient MHC I antigen presentation. Molecular modeling and all-atom molecular dynamics simulations suggest an ionic lock-switch mechanism for the binding of TAP to tapasin, in which an unfavorable uncompensated charge in the ER-membrane is prevented through complex formation. Our findings not only deepen the understanding of the interaction network within the PLC, but also provide evidence for a general interaction principle of dynamic multiprotein membrane complexes in immunity.