Refine
Year of publication
Has Fulltext
- yes (48)
Is part of the Bibliography
- no (48)
Keywords
- environmental tobacco smoke (4)
- particulate matter (4)
- Attitude (3)
- Knowledge (3)
- Malaria (3)
- Zika virus (3)
- Aedes aegypti (2)
- Aedes albopictus (2)
- Asian bush mosquito (2)
- Bibliometrics (2)
Institute
- Medizin (42)
- Senckenbergische Naturforschende Gesellschaft (9)
- Institut für Ökologie, Evolution und Diversität (7)
- Biodiversität und Klima Forschungszentrum (BiK-F) (6)
- Biochemie und Chemie (4)
- Geowissenschaften (2)
- Geowissenschaften / Geographie (2)
- Biowissenschaften (1)
- Frankfurt Institute for Advanced Studies (FIAS) (1)
- keine Angabe Institut (1)
URPOSE: Today, the majority of medical graduates in countries such as the UK, the US or Germany are female. This poses a major problem for workforce planning especially in urology. We here use first the first time the previously established Brüggmann Groneberg (BG) index to assess if female academic career options advance in urology.
METHODS: Different operating parameters (student population, urology specialist population, urology chair female:male (f:m) ratio) were collected from the Federal Office of Statistics, the Federal Chamber of Physicians and the medical faculties of 36 German universities. Four time points were monitored (2000, 2005, 2010 and 2015). From these data, female to male (f:m) ratios and the recently established career advancement (BG) index have been calculated.
RESULTS: The German hospital urology specialists' f:m ratios were 0.257 (499 female vs. 1944 male) for 2015, 0.195 for 2010, 0.133 for 2005 and 0.12 for 2000. The career advancement (BG) index was 0.0007 for 2000, 0,0005 for 2005, 0.094 for 2010 and 0.073 for 2015. The decrease from 2010 to 2015 was due to an increase in the f:m ratio of hospital urologists and female medical students.
CONCLUSION: The BG index clearly illustrated that there is an urgent need for special academic career funding programs to counteract gender problems in urology. The BG index has been shown to be an excellent tool to assess female academic career options and will be very helpful to assess and document positive or negative changes in the next decades.
The Asian bush mosquito (Aedes japonicus japonicus, Theobald 1901) is an invasive culicid species which originates in Asia but is nowadays present in northern America and Europe. It is a competent vector for several human disease pathogens. In addition to the public health threat, this invasive species may also be an ecological threat for native container-breeding mosquitoes which share a similar larval habitat. Therefore, it is of importance to gain knowledge on ecological and eco-toxicological features of the Asian bush mosquito. However, optimal laboratory feeding conditions have not yet been established. Standardized feeding methods will be needed in assessing the impact of insecticides or competitional strength of this species. To fill this gap, we performed experiments on food quality and quantity for Ae. j. japonicus larvae. We found out that the commercial fish food TetraMin (Tetra, Melle, Germany) in a dose of 10 mg per larva is the most suitable food tested. We also suggest a protocol with a feeding sequence of seven portions for all larval stages of this species.
Background: Ever since it was discovered that zoophilic vectors can transmit malaria, zooprophylaxis has been used to prevent the disease. However, zoopotentiation has also been observed. Thus, the presence of livestock has been widely accepted as an important variable for the prevalence and risk of malaria, but the effectiveness of zooprophylaxis remained subject to debate. This study aims to critically analyse the effects of the presence of livestock on malaria prevalence using a large dataset from Indonesia.
Methods: This study is based on data from the Indonesia Basic Health Research ("Riskesdas") cross-sectional survey of 2007 organized by the National Institute of Health Research and Development of Indonesia’s Ministry of Health. The subset of data used in the present study included 259,885 research participants who reside in the rural areas of 176 regencies throughout the 15 provinces of Indonesia where the prevalence of malaria is higher than the national average. The variable "existence of livestock" and other independent demographic, social and behavioural variables were tested as potential determinants for malaria prevalence by multivariate logistic regressions.
Results: Raising medium-sized animals in the house was a significant predictor of malaria prevalence (OR = 2.980; 95% CI 2.348–3.782, P < 0.001) when compared to keeping such animals outside of the house (OR = 1.713; 95% CI 1.515–1.937, P < 0.001). After adjusting for gender, age, access to community health facility, sewage canal condition, use of mosquito nets and insecticide-treated bed nets, the participants who raised medium-sized animals inside their homes were 2.8 times more likely to contract malaria than respondents who did not (adjusted odds ratio = 2.809; 95% CI 2.207–3.575; P < 0.001).
Conclusions: The results of this study highlight the importance of livestock for malaria transmission, suggesting that keeping livestock in the house contributes to malaria risk rather than prophylaxis in Indonesia. Livestock-based interventions should therefore play a significant role in the implementation of malaria control programmes, and focus on households with a high proportion of medium-sized animals in rural areas. The implementation of a "One Health" strategy to eliminate malaria in Indonesia by 2030 is strongly recommended.
Spatial modelling of malaria cases associated with environmental factors in South Sumatra, Indonesia
(2018)
Background: Malaria, a parasitic infection, is a life-threatening disease in South Sumatra Province, Indonesia. This study aimed to investigate the spatial association between malaria occurrence and environmental risk factors.
Methods: The number of confirmed malaria cases was analysed for the year 2013 from the routine reporting of the Provincial Health Office of South Sumatra. The cases were spread over 436 out of 1613 villages. Six potential ecological predictors of malaria cases were analysed in the different regions using ordinary least square (OLS) and geographically weighted regression (GWR). The global pattern and spatial variability of associations between malaria cases and the selected potential ecological predictors was explored.
Results: The importance of different environmental and geographic parameters for malaria was shown at global and village-level in South Sumatra, Indonesia. The independent variables altitude, distance from forest, and rainfall in global OLS were significantly associated with malaria cases. However, as shown by GWR model and in line with recent reviews, the relationship between malaria and environmental factors in South Sumatra strongly varied spatially in different regions.
Conclusions: A more in-depth understanding of local ecological factors influencing malaria disease as shown in present study may not only be useful for developing sustainable regional malaria control programmes, but can also benefit malaria elimination efforts at village level.
Although it has been suggested that temperature increase may alter the toxic potential of environmental pollutants, few studies have investigated the potential risk of chemical stressors for wildlife under Global Climate Change (GCC) impact. We applied a bifactorial multigeneration study in order to test if GCC conditions alter the effects of low pesticide concentrations on life history and genetic diversity of the aquatic model organism Chironomus riparius. Experimental populations of the species were chronically exposed to a low concentration of the fungicide pyrimethanil (half of the no-observed-adverse-effect concentration: NOAEC/2) under two dynamic present-day temperature simulations (11.0–22.7°C; 14.0–25.2°C) and one future scenario (16.5–28.1°C). During the 140-day multigeneration study, survival, emergence, reproduction, population growth, and genetic diversity of C. riparius were analyzed. Our results reveal that high temperature and pyrimethanil act synergistically on the midge C. riparius. In simulated present-day scenarios, a NOAEC/2 of pyrimethanil as derived from a life-cycle toxicity test provoked only slight-to-moderate beneficial or adverse effects on C. riparius. In contrast, exposure to a NOAEC/2 concentration of pyrimethanil at a thermal situation likely for a summer under GCC conditions uncovered adverse effects on mortality and population growth rate. In addition, genetic diversity was considerably reduced by pyrimethanil in the future scenario, but only slightly under current climatic conditions. Our multigeneration study under near-natural (climatic) conditions indicates that not only the impact of climate change, but also low concentrations of pesticides may pose a reasonable risk for aquatic insects in future.
Air pollution of particulate matter (PM) from traffic emissions has a significant impact on human health. Risk assessments for different traffic participants are often performed on the basis of data from local air quality monitoring stations. Numerous studies demonstrated the limitation of this approach. To assess the risk of PM exposure to a car driver more realistically, we measure the exposure to PM in a car cabin with a mobile aerosol spectrometer in Frankfurt am Main under different settings (local variations, opened versus a closed window) and compare it with data from stationary measurement. A video camera monitored the surroundings for potential PM source detection. In-cabin concentrations peaked at 508 µg m−3 for PM10, 133.9 µg m−3 for PM2.5, and 401.3 µg m−3 for coarse particles, and strongly depended on PM size and PM concentration in ambient air. The concentration of smaller particles showed low fluctuations, but the concentration of coarse particles showed high fluctuations with maximum values on busy roads. Several of these concentration peaks were assigned to the corresponding sources with characteristic particle size distribution profiles. The closure of the car window reduced the exposure to PM, and in particular to coarse particles. The mobile measured PM values differed significantly from stationary PM measures, although good correlations were computed for finer particles. Mobile rather than stationary measurements are essential to assess the risk of PM exposure for car passengers.
Background: The invasive temperate mosquito Aedes japonicus japonicus is a potential vector for various infectious diseases and therefore a target of vector control measures. Even though established in Germany, it is unclear whether the species has already reached its full distribution potential. The possible range of the species, its annual population dynamics, the success of vector control measures and future expansions due to climate change still remain poorly understood. While numerous studies on occurrence have been conducted, they used mainly presence data from relatively few locations. In contrast, we used experimental life history data to model the dynamics of a continuous stage-structured population to infer potential seasonal densities and ask whether stable populations are likely to establish over a period of more than one year. In addition, we used climate change models to infer future ranges. Finally, we evaluated the effectiveness of various stage-specific vector control measures.
Results: Aedes j. japonicus has already established stable populations in the southwest and west of Germany. Our models predict a spread of Ae. j. japonicus beyond the currently observed range, but likely not much further eastwards under current climatic conditions. Climate change models, however, will expand this range substantially and higher annual densities can be expected. Applying vector control measures to oviposition, survival of eggs, larvae or adults showed that application of adulticides for 30 days between late spring and early autumn, while ambient temperatures are above 9 °C, can reduce population density by 75%. Continuous application of larvicide showed similar results in population reduction. Most importantly, we showed that with the consequent application of a mixed strategy, it should be possible to significantly reduce or even extinguish existing populations with reasonable effort.
Conclusion: Our study provides valuable insights into the mechanisms concerning the establishment of stable populations in invasive species. In order to minimise the hazard to public health, we recommend vector control measures to be applied in ‘high risk areas’ which are predicted to allow establishment of stable populations to establish.
Background: As ectothermic animals, temperature influences insects in almost every aspect. The potential disease spreading Asian bush mosquito (Aedes japonicus japonicus) is native to temperate East Asia but invasive in several parts of the world. We report on the previously poorly understood temperature-dependence of its life history under laboratory conditions to understand invasion processes and to model temperature niches.
Results: To evaluate winter survival, eggs were exposed between 1 day and 14 days to low temperatures (5 °C, 0 °C, -5 °C and -9 °C). Hatching success was drastically decreased after exposure to 0 °C and -5 °C, and the minimal hatching success of 0% was reached at -9 °C after two days. We then exposed larvae to 14 temperatures and assessed their life trait parameters. Larval survival to adulthood was only possible between 10 °C and 31 °C. Based on this, we modelled the optimal (25 °C), minimal (7 °C) and maximal (31 °C) temperature for cumulative female survival. The time to adult emergence ranges from 12 days to 58 days depending on temperature. We used an age-at-emergence-temperature model to calculate the number of potential generations per year for the Asian bush mosquito in Germany with an average of 4.72 potential generations. At lower temperatures, individuals grew larger than at higher temperatures with female R1 length ranging from 3.04 ± 0.1 mm at 31 °C to 4.26 ± 0.2 mm at 15 °C.
Conclusions: Reduced egg hatch after exposure to sub-zero temperatures prohibits the establishment of the Asian bush mosquito in large parts of Germany. Larval overwintering is not possible at temperature ≤ 5 °C. The many potential generations displayed per year may contribute to the species’ invasion success. This study on the thermal ecology of the Asian bush mosquito adds to our knowledge on the temperature dependence of the species and data could be incorporated in epidemiological and population dynamic modelling.
The large conductance voltage- and Ca2+-activated potassium (BK) channel has been suggested to play an important role in the signal transduction process of cochlear inner hair cells. BK channels have been shown to be composed of the pore-forming alpha-subunit coexpressed with the auxiliary beta-1-subunit. Analyzing the hearing function and cochlear phenotype of BK channel alpha-(BKalpha–/–) and beta-1-subunit (BKbeta-1–/–) knockout mice, we demonstrate normal hearing function and cochlear structure of BKbeta-1–/– mice. During the first 4 postnatal weeks also, BKalpha–/– mice most surprisingly did not show any obvious hearing deficits. High-frequency hearing loss developed in BKalpha–/– mice only from ca. 8 weeks postnatally onward and was accompanied by a lack of distortion product otoacoustic emissions, suggesting outer hair cell (OHC) dysfunction. Hearing loss was linked to a loss of the KCNQ4 potassium channel in membranes of OHCs in the basal and midbasal cochlear turn, preceding hair cell degeneration and leading to a similar phenotype as elicited by pharmacologic blockade of KCNQ4 channels. Although the actual link between BK gene deletion, loss of KCNQ4 in OHCs, and OHC degeneration requires further investigation, data already suggest human BK-coding slo1 gene mutation as a susceptibility factor for progressive deafness, similar to KCNQ4 potassium channel mutations. © 2004, The National Academy of Sciences. Freely available online through the PNAS open access option.