Refine
Year of publication
Language
- English (593)
Has Fulltext
- yes (593)
Is part of the Bibliography
- no (593)
Keywords
- BESIII (20)
- e +-e − Experiments (20)
- Branching fraction (15)
- Particle and Resonance Production (9)
- Charm Physics (6)
- Quarkonium (6)
- Spectroscopy (6)
- Hadronic decays (5)
- QCD (5)
- Branching fractions (4)
Institute
- Physik (589)
- Medizin (2)
- Frankfurt Institute for Advanced Studies (FIAS) (1)
- Informatik (1)
Using 𝑒+𝑒−→Λ+𝑐¯Λ−𝑐 production from a 567 pb−1 data sample collected by BESIII at 4.6 GeV, a full angular analysis is carried out simultaneously on the four decay modes of Λ+𝑐→𝑝𝐾0𝑆, Λ𝜋+, Σ+𝜋0, and Σ0𝜋+. For the first time, the Λ+𝑐 transverse polarization is studied in unpolarized 𝑒+𝑒− collisions, where a nonzero effect is observed with a statistical significance of 2.1𝜎. The decay asymmetry parameters of the Λ+𝑐 weak hadronic decays into 𝑝𝐾0𝑆, Λ𝜋+, Σ+𝜋0 and Σ0𝜋+ are measured to be 0.18±0.43(stat)±0.14(syst), −0.80±0.11(stat)±0.02(syst), −0.57±0.10(stat)±0.07(syst), and −0.73±0.17(stat)±0.07(syst), respectively. In comparison with previous results, the measurements for the Λ𝜋+ and Σ+𝜋0 modes are consistent but with improved precision, while the parameters for the 𝑝𝐾0𝑆 and Σ0𝜋+ modes are measured for the first time.
The first amplitude analysis of the decay D+s→K−K+π+π0 is presented using the data samples, corresponding to an integrated luminosity of 6.32 fb−1, collected with the BESIII detector at e+e− center-of-mass energies between 4.178 and 4.226 GeV. More than 3000 events selected with a purity of 97.5\% are used to perform the amplitude analysis, and nine components are found necessary to describe the data. Relative fractions and phases of the intermediate decays are determined. With the detection efficiency estimated by the results of the amplitude analysis, the branching fraction of D+s→K−K+π+π0 decay is measured to be (5.42±0.10stat.±0.17syst.)%.
We present the first amplitude analysis of the decay D+s→K−K+π+π0 using data samples of 6.32 fb−1 recorded with the BESIII detector between 4.178 and 4.226 GeV. More than 3000 events selected with a purity of 97.5\% are used to perform the amplitude analysis, and nine components are found necessary to describe the data. Relative fractions and phases of the intermediate decays are determined. With the detection efficiency determined by the results of the amplitude analysis, we measure the branching fraction of D+s→K−K+π+π0 decay to be (5.42±0.10stat.±0.17syst.)%.
By using 6.32 fb−1 of data collected with the BESIII detector at center-of-mass energies between 4.178 and 4.226 GeV, we perform an amplitude analysis of the decay D+s ! K0S + 0 and determine the relative fractions and phase differences of different intermediate processes, which include K0S (770)+, K0S (1450)+, K (892)0 +, K (892)+ 0, and K (1410)0 +. With the detection efficiency based on the amplitude analysis results, the absolute branching fraction is measured to be B(D+s ! K0S + 0) = (5.43 ± 0.30stat ± 0.15syst) × 10−3.
Though immensely successful, the standard model of particle physics does not offer any explanation as to why our Universe contains so much more matter than antimatter. A key to a dynamically generated matter–antimatter asymmetry is the existence of processes that violate the combined charge conjugation and parity (CP) symmetry1. As such, precision tests of CP symmetry may be used to search for physics beyond the standard model. However, hadrons decay through an interplay of strong and weak processes, quantified in terms of relative phases between the amplitudes. Although previous experiments constructed CP observables that depend on both strong and weak phases, we present an approach where sequential two-body decays of entangled multi-strange baryon–antibaryon pairs provide a separation between these phases. Our method, exploiting spin entanglement between the double-strange Ξ− baryon and its antiparticle2 Ξ¯+
, has enabled a direct determination of the weak-phase difference, (ξP − ξS) = (1.2 ± 3.4 ± 0.8) × 10−2 rad. Furthermore, three independent CP observables can be constructed from our measured parameters. The precision in the estimated parameters for a given data sample size is several orders of magnitude greater than achieved with previous methods3. Finally, we provide an independent measurement of the recently debated Λ decay parameter αΛ (refs. 4,5). The ΛΛ¯
asymmetry is in agreement with and compatible in precision to the most precise previous measurement.
Using 10.1 × 109 J/ψ events produced by the Beijing Electron Positron Collider (BEPCII) at a center-of-mass energy √s = 3.097 GeV and collected with the BESIII detector, we present a search for the rare semi-leptonic decay J/ψ → D−e+νe + c.c. No excess of signal above background is observed, and an upper limit on the branching fraction B(J/ψ → D−e +νe + c.c.) < 7.1 × 10−8 is obtained at 90% confidence level. This is an improvement of more than two orders of magnitude over the previous best limit.
The Born cross sections and effective form factors for process 𝑒+𝑒−→Ξ−¯Ξ+ are measured at eight center-of-mass energies between 2.644 and 3.080 GeV, using a total integrated luminosity of 363.9 pb−1 𝑒+𝑒− collision data collected with the BESIII detector at BEPCII. After performing a fit to the Born cross section of 𝑒+𝑒−→Ξ−¯Ξ+, no significant threshold effect is observed.
Based on an e+e− collision data sample corresponding to an integrated luminosity of 2.93 fb−1 collected with the BESIII detector at √s=3.773 GeV, the first amplitude analysis of the singly Cabibbo-suppressed decay D+→K+K0Sπ0 is performed. From the amplitude analysis, the K∗(892)+K0S component is found to be dominant with a fraction of (57.1±2.6±4.2)%, where the first uncertainty is statistical and the second systematic. In combination with the absolute branching fraction B(D+→K+K0Sπ0) measured by BESIII, we obtain B(D+→K∗(892)+K0S)=(8.69±0.40±0.64±0.51)×10−3, where the third uncertainty is due to the branching fraction B(D+→K+K0Sπ0). The precision of this result is significantly improved compared to the previous measurement. This result also differs from most of theoretical predictions by about 4σ, which may help to improve the understanding of the dynamics behind.
Using 2.93 fb−1 of 𝑒+𝑒− collision data taken at a center-of-mass energy of 3.773 GeV with the BESIII detector, we report the first measurements of the absolute branching fractions of 14 hadronic 𝐷0(+) decays to exclusive final states with an 𝜂, e.g., 𝐷0→𝐾−𝜋+𝜂, 𝐾0𝑆𝜋0𝜂, 𝐾+𝐾−𝜂, 𝐾0𝑆𝐾0𝑆𝜂, 𝐾−𝜋+𝜋0𝜂, 𝐾0𝑆𝜋+𝜋−𝜂, 𝐾0𝑆𝜋0𝜋0𝜂, and 𝜋+𝜋−𝜋0𝜂; 𝐷+→𝐾0𝑆𝜋+𝜂, 𝐾0𝑆𝐾+𝜂, 𝐾−𝜋+𝜋+𝜂, 𝐾0𝑆𝜋+𝜋0𝜂, 𝜋+𝜋+𝜋−𝜂, and 𝜋+𝜋0𝜋0𝜂. Among these decays, the 𝐷0→𝐾−𝜋+𝜂 and 𝐷+→𝐾0 𝑆𝜋+𝜂 decays have the largest branching fractions, which are ℬ(𝐷0→𝐾−𝜋+𝜂) = (1.853±0.025stat±0.031syst)% and ℬ(𝐷+→𝐾0𝑆𝜋+𝜂) = (1.309±0.037stat±0.031syst)%, respectively. The charge-parity asymmetries for the six decays with highest event yields are determined, and no statistically significant charge-parity violation is found.
A search for the charged lepton flavor violating decay 𝐽/𝜓→𝑒±𝜏∓ with 𝜏∓→𝜋∓𝜋0𝜈𝜏 is performed with about 10×109 𝐽/𝜓 events collected with the BESIII detector at the BEPCII. No significant signal is observed, and an upper limit is set on the branching fraction ℬ(𝐽/𝜓→𝑒±𝜏∓)<7.5×10−8 at the 90% confidence level. This improves the previously published limit by two orders of magnitude.