Refine
Year of publication
Language
- English (39)
Has Fulltext
- yes (39)
Is part of the Bibliography
- no (39)
Keywords
- Diffraction (2)
- Elastic scattering (2)
- Polarization (2)
- Breast cancer (1)
- Charged-particle multiplicity (1)
- Charmonia (1)
- Collectivity (1)
- Contrast-enhanced (1)
- Correlation (1)
- Di-hadron correlations (1)
Institute
- Physik (20)
- Frankfurt Institute for Advanced Studies (FIAS) (18)
- ELEMENTS (1)
- Medizin (1)
STAR's measurements of directed flow (v1) around midrapidity for π±, K±, K0S, p and p¯ in Au + Au collisions at $\sqrtsNN = 200$ GeV are presented. A negative v1(y) slope is observed for most of produced particles (π±, K±, K0S and p¯). In 5-30% central collisions a sizable difference is present between the v1(y) slope of protons and antiprotons, with the former being consistent with zero within errors. The v1 excitation function is presented. Comparisons to model calculations (RQMD, UrQMD, AMPT, QGSM with parton recombination, and a hydrodynamics model with a tilted source) are made. For those models which have calculations of v1 for both pions and protons, none of them can describe v1(y) for pions and protons simultaneously. The hydrodynamics model with a tilted source as currently implemented cannot explain the centrality dependence of the difference between the v1(y) slopes of protons and antiprotons.
STAR's measurements of directed flow (v1) around midrapidity for π±, K±, K0S, p and p¯ in Au + Au collisions at $\sqrtsNN = 200$ GeV are presented. A negative v1(y) slope is observed for most of produced particles (π±, K±, K0S and p¯). The proton v1(y) slope is found to be much closer to zero compared to antiprotons. A sizable difference is seen between v1 of protons and antiprotons in 5-30% central collisions. The v1 excitation function is presented. Comparisons to model calculations (RQMD, UrQMD, AMPT, QGSM with parton recombination, and a hydrodynamics model with a tilted source) are made. Anti-flow alone cannot explain the centrality dependence of the difference between the v1(y) slopes of protons and antiprotons.
Rapidity-odd directed flow measurements at midrapidity are presented for Λ, Λ¯, K±, K0s and ϕ at sNN−−−−√= 7.7, 11.5, 14.5, 19.6, 27, 39, 62.4 and 200 GeV in Au+Au collisions recorded by the STAR detector at the Relativistic Heavy Ion Collider. These measurements greatly expand the scope of data available to constrain models with differing prescriptions for the equation of state of quantum chromodynamics. Results show good sensitivity for testing a picture where flow is assumed to be imposed before hadron formation and the observed particles are assumed to form via coalescence of constituent quarks. The pattern of departure from a coalescence-inspired sum-rule can be a valuable new tool for probing the collision dynamics.
We report a high precision measurement of the transverse single spin asymmetry AN at the center of mass energy √s=200 GeV in elastic proton–proton scattering by the STAR experiment at RHIC. The AN was measured in the four-momentum transfer squared t range 0.003⩽|t|⩽0.035 (GeV/c)2, the region of a significant interference between the electromagnetic and hadronic scattering amplitudes. The measured values of AN and its t-dependence are consistent with a vanishing hadronic spin-flip amplitude, thus providing strong constraints on the ratio of the single spin-flip to the non-flip amplitudes. Since the hadronic amplitude is dominated by the Pomeron amplitude at this √s, we conclude that this measurement addresses the question about the presence of a hadronic spin flip due to the Pomeron exchange in polarized proton–proton elastic scattering.
We report on the measurement of the Central Exclusive Production of charged particle pairs h+h− (h = π, K, p) with the STAR detector at RHIC in proton-proton collisions at √s = 200 GeV. The charged particle pairs produced in the reaction pp → p′ + h+h− + p′ are reconstructed from the tracks in the central detector and identified using the specific energy loss and the time of flight method, while the forward-scattered protons are measured in the Roman Pot system. Exclusivity of the event is guaranteed by requiring the transverse momentum balance of all four final-state particles. Differential cross sections are measured as functions of observables related to the central hadronic final state and to the forward-scattered protons. They are measured in a fiducial region corresponding to the acceptance of the STAR detector and determined by the central particles’ transverse momenta and pseudorapidities as well as by the forward-scattered protons’ momenta. This fiducial region roughly corresponds to the square of the four-momentum transfers at the proton vertices in the range 0.04 GeV2 < −t1, −t2 < 0.2 GeV2, invariant masses of the charged particle pairs up to a few GeV and pseudorapidities of the centrally-produced hadrons in the range |η| < 0.7. The measured cross sections are compared to phenomenological predictions based on the Double Pomeron Exchange (DPE) model. Structures observed in the mass spectra of π+π− and K+K− pairs are consistent with the DPE model, while angular distributions of pions suggest a dominant spin-0 contribution to π+π− production. For π+π− production, the fiducial cross section is extrapolated to the Lorentz-invariant region, which allows decomposition of the invariant mass spectrum into continuum and resonant contributions. The extrapolated cross section is well described by the continuum production and at least three resonances, the f0(980), f2(1270) and f0(1500), with a possible small contribution from the f0(1370). Fits to the extrapolated differential cross section as a function of t1 and t2 enable extraction of the exponential slope parameters in several bins of the invariant mass of π+π− pairs. These parameters are sensitive to the size of the interaction region.
The STAR Collaboration reports measurements of the transverse single-spin asymmetry (TSSA) of inclusive 𝜋0 at center-of-mass energies (√𝑠) of 200 GeV and 500 GeV in transversely polarized proton-proton collisions in the pseudo-rapidity region 2.7 to 4.0. The results at the two different energies show a continuous increase of the TSSA with Feynman-𝑥, and, when compared to previous measurements, no dependence on √𝑠 from 19.4 GeV to 500 GeV is found. To investigate the underlying physics leading to this large TSSA, different topologies have been studied. 𝜋0 with no nearby particles tend to have a higher TSSA than inclusive 𝜋0. The TSSA for inclusive electromagnetic jets, sensitive to the Sivers effect in the initial state, is substantially smaller, but shows the same behavior as the inclusive 𝜋0 asymmetry as a function of Feynman-𝑥. To investigate final-state effects, the Collins asymmetry of 𝜋0 inside electromagnetic jets has been measured. The Collins asymmetry is analyzed for its dependence on the 𝜋0 momentum transverse to the jet thrust axis and its dependence on the fraction of jet energy carried by the 𝜋0. The asymmetry was found to be small in each case for both center-of-mass energies. All the measurements are compared to QCD-based theoretical calculations for transverse-momentum-dependent parton distribution functions and fragmentation functions. Some discrepancies are found, which indicates new mechanisms might be involved.
Measurement of inclusive J/ψ polarization in p + p collisions at √s=200 GeV by the STAR experiment
(2020)
We report on new measurements of inclusive 𝐽/𝜓 polarization at midrapidity in 𝑝+𝑝 collisions at √𝑠=200 GeV by the STAR experiment at the Relativistic Heavy Ion Collider. The polarization parameters, 𝜆𝜃, 𝜆𝜙, and 𝜆𝜃𝜙, are measured as a function of transverse momentum (𝑝T) in both the helicity and Collins-Soper (CS) reference frames within 𝑝T<10 GeV/𝑐. Except for 𝜆𝜃 in the CS frame at the highest measured 𝑝T, all three polarization parameters are consistent with 0 in both reference frames without any strong 𝑝T dependence. Several model calculations are compared with data, and the one using the Color Glass Condensate effective field theory coupled with nonrelativistic QCD gives the best overall description of the experimental results, even though other models cannot be ruled out due to experimental uncertainties.
We report on a polarization measurement of inclusive J/ψ mesons in the di-electron decay channel at mid-rapidity at 2 < pT < 6 GeV/c in p + p collisions at √s = 200 GeV. Data were taken with the STAR detector at RHIC. The J/ψ polarization measurement should help to distinguish between different models of the J/ψ production mechanism since they predict different pT dependences of the J/ψ polarization. In this analysis, J/ψ polarization is studied in the helicity frame. The polarization parameter λθ measured at RHIC becomes smaller towards high pT , indicating more longitudinal J/ψ polarization as pT increases. The result is compared with predictions of presently available models.
Measurement of inclusive charged-particle jet production in Au+Au collisions at √sNN = 200 GeV
(2021)
The STAR Collaboration at the Relativistic Heavy Ion Collider reports the first measurement of inclusive jet production in peripheral and central Au+Au collisions at sNN−−−−√=200 GeV. Jets are reconstructed with the anti-kT algorithm using charged tracks with pseudorapidity |η|<1.0 and transverse momentum 0.2<pchT,jet<30 GeV/c, with jet resolution parameter R=0.2, 0.3, and 0.4. The large background yield uncorrelated with the jet signal is observed to be dominated by statistical phase space, consistent with a previous coincidence measurement. This background is suppressed by requiring a high-transverse-momentum (high-pT) leading hadron in accepted jet candidates. The bias imposed by this requirement is assessed, and the pT region in which the bias is small is identified. Inclusive charged-particle jet distributions are reported in peripheral and central Au+Au collisions for 5<pchT,jet<25 GeV/c and 5<pchT,jet<30 GeV/c, respectively. The charged-particle jet inclusive yield is suppressed for central Au+Au collisions, compared to both the peripheral Au+Au yield from this measurement and to the pp yield calculated using the PYTHIA event generator. The magnitude of the suppression is consistent with that of inclusive hadron production at high pT, and that of semi-inclusive recoil jet yield when expressed in terms of energy loss due to medium-induced energy transport. Comparison of inclusive charged-particle jet yields for different values of R exhibits no significant evidence for medium-induced broadening of the transverse jet profile for R<0.4 in central Au+Au collisions. The measured distributions are consistent with theoretical model calculations that incorporate jet quenching.
Transverse spin transfer to Λ and ¯Λ hyperons in polarized proton-proton collisions at √𝑠=200 GeV
(2018)
The transverse spin transfer from polarized protons to Λ and Λ¯ hyperons is expected to provide sensitivity to the transversity distribution of the nucleon and to the transversely polarized fragmentation functions. We report the first measurement of the transverse spin transfer to Λ and Λ¯ along the polarization direction of the fragmenting quark, DTT, in transversely polarized proton-proton collisions at s√=200GeV with the STAR detector at RHIC. The data correspond to an integrated luminosity of 18pb−1 and cover the pseudorapidity range |η|<1.2 and transverse momenta pT up to 8GeV/c. The dependence on pT and η are presented. The DTT results are found to be comparable with a model prediction, and are also consistent with zero within uncertainties.