Refine
Document Type
- Article (3)
Language
- English (3)
Has Fulltext
- yes (3)
Is part of the Bibliography
- no (3)
Keywords
- Advanced biliary tract cancer (1)
- BTC (1)
- Hand-foot syndrome (1)
- Hif1α (1)
- PDGFRβ (1)
- Sorafenib (1)
- VEGFR-2 (1)
- VEGFR-3 (1)
- c-kit (1)
This paper reports on Monte Carlo simulation results for future measurements of the moduli of time-like proton electromagnetic form factors, |GE | and |GM|, using the ¯pp → μ+μ− reaction at PANDA (FAIR). The electromagnetic form factors are fundamental quantities parameterizing the electric and magnetic structure of hadrons. This work estimates the statistical and total accuracy with which the form factors can be measured at PANDA, using an analysis of simulated data within the PandaRoot software framework. The most crucial background channel is ¯pp → π+π−,due to the very similar behavior of muons and pions in the detector. The suppression factors are evaluated for this and all other relevant background channels at different values of antiproton beam momentum. The signal/background separation is based on a multivariate analysis, using the Boosted Decision Trees method. An expected background subtraction is included in this study, based on realistic angular distribuations of the background contribution. Systematic uncertainties are considered and the relative total uncertainties of the form factor measurements are presented.
Background: Since sorafenib has shown activity in different tumour types and gemcitabine regimens improved the outcome for biliary tract cancer (BTC) patients, we evaluated first-line gemcitabine plus sorafenib in a double-blind phase II study.
Patients and methods: 102 unresectable or metastatic BTC patients with histologically proven adenocarcinoma of gallbladder or intrahepatic bile ducts, Eastern Cooperative Oncology Group (ECOG) 0–2 were randomised to gemcitabine (1000 mg/m2 once weekly, first 7-weeks + 1-week rest followed by once 3-weeks + 1-week rest) plus sorafenib (400 mg twice daily) or placebo. Treatment continued until progression or unacceptable toxicity. Tumour samples were prospectively stained for sorafenib targets and potential biomarkers. Serum samples (first two cycles) were measured for vascular endothelial growth factors (VEGFs), vascular endothelial growth factor receptor 2 (VEGFR-2) and stromal cell-derived factor 1 (SDF1)α by enzyme-linked immunosorbent assay (ELISA).
Results: Gemcitabine plus sorafenib was generally well tolerated. Four and three patients achieved partial responses in the sorafenib and placebo groups, respectively. There was no difference in the primary end-point, median progression-free survival (PFS) for gemcitabine plus sorafenib versus gemcitabine plus placebo (3.0 versus 4.9 months, P = 0.859), and no difference for median overall survival (OS) (8.4 versus 11.2 months, P = 0.775). Patients with liver metastasis after resection of primary BTC survived longer with sorafenib (P = 0.019) compared to placebo. Patients who developed hand-foot syndrome (HFS) showed longer PFS and OS than patients without HFS. Two sorafenib targets, VEGFR-2 and c-kit, were not expressed in BTC samples. VEGFR-3 and Hif1α were associated with lymph node metastases and T stage. Absence of PDGFRβ expression correlated with longer PFS.
Conclusion: The addition of sorafenib to gemcitabine did not demonstrate improved efficacy in advanced BTC patients. Biomarker subgroup analysis suggested that some patients might benefit from combined treatment.
In March 2019 the HADES experiment recorded 14 billion Ag+Ag collisions at √sNN = 2.55 GeV as a part of the FAIR phase-0 physics program. In this contribution, we present and investigate our capabilities to reconstruct and analyze weakly decaying strange hadrons and hypernuclei emerging from these collisions. The focus is put on measuring the mean lifetimes of these particles.