Refine
Document Type
- Article (10)
Language
- English (10)
Has Fulltext
- yes (10)
Is part of the Bibliography
- no (10)
Keywords
- ABC transporter (1)
- Cancer (1)
- DHA (1)
- EPA (1)
- Glycosphingolipids (1)
- LC–MS/MS (1)
- MDR1 (1)
- MRP4 (1)
- Multidrug resistance (1)
- P-gp (1)
The synthesis of the recently characterized depsipeptide szentiamide (1), which is produced by the entomopathogenic bacterium Xenorhabdus szentirmaii, is described. Whereas no biological activity was previously identified for 1, the material derived from the efficient synthesis enabled additional bioactivity tests leading to the identification of a notable activity against insect cells and Plasmodium falciparum, the causative agent of malaria.
Spherical harmonics coeffcients for ligand-based virtual screening of cyclooxygenase inhibitors
(2011)
Background: Molecular descriptors are essential for many applications in computational chemistry, such as ligand-based similarity searching. Spherical harmonics have previously been suggested as comprehensive descriptors of molecular structure and properties. We investigate a spherical harmonics descriptor for shape-based virtual screening. Methodology/Principal Findings: We introduce and validate a partially rotation-invariant three-dimensional molecular shape descriptor based on the norm of spherical harmonics expansion coefficients. Using this molecular representation, we parameterize molecular surfaces, i.e., isosurfaces of spatial molecular property distributions. We validate the shape descriptor in a comprehensive retrospective virtual screening experiment. In a prospective study, we virtually screen a large compound library for cyclooxygenase inhibitors, using a self-organizing map as a pre-filter and the shape descriptor for candidate prioritization. Conclusions/Significance: 12 compounds were tested in vitro for direct enzyme inhibition and in a whole blood assay. Active compounds containing a triazole scaffold were identified as direct cyclooxygenase-1 inhibitors. This outcome corroborates the usefulness of spherical harmonics for representation of molecular shape in virtual screening of large compound collections. The combination of pharmacophore and shape-based filtering of screening candidates proved to be a straightforward approach to finding novel bioactive chemotypes with minimal experimental effort.
This review provides an overview on components of the sphingolipid superfamily, on their localization and metabolism. Information about the sphingolipid biological activity in cell physiopathology is given. Recent studies highlight the role of sphingolipids in inflammatory process. We summarize the emerging data that support the different roles of the sphingolipid members in specific phases of inflammation: (1) migration of immune cells, (2) recognition of exogenous agents, and (3) activation/differentiation of immune cells.
The etiology of many diseases results from the dysregulation of inflammation. Understanding the molecular mechanisms controlling the inflammatory response is essential to formulate therapeutic strategies for the treatment of inflammatory conditions. In fact, substantial research has unveiled important aspects of the inflammatory machinery, both at the cellular and molecular levels. Recently, sphingolipids (Sph) have emerged as signaling molecules that regulate many cell functions, and ample evidence emphasizes their role in the regulation of inflammatory responses. ...
The lipid status in patients with ulcerative colitis : Sphingolipids are disease-dependent regulated
(2019)
The factors that contribute to the development of ulcerative colitis (UC), are still not fully identified. Disruption of the colon barrier is one of the first events leading to invasion of bacteria and activation of the immune system. The colon barrier is strongly influenced by sphingolipids. Sphingolipids impact cell–cell contacts and function as second messengers. We collected blood and colon tissue samples from UC patients and healthy controls and investigated the sphingolipids and other lipids by LC-MS/MS or LC-QTOFMS. The expression of enzymes of the sphingolipid pathway were determined by RT-PCR and immunohistochemistry. In inflamed colon tissue, the de novo-synthesis of sphingolipids is reduced, whereas lactosylceramides are increased. Reduction of dihydroceramides was due to posttranslational inhibition rather than altered serine palmitoyl transferase or ceramide synthase expression in inflamed colon tissue. Furthermore, in human plasma from UC-patients, several sphinglipids change significantly in comparison to healthy controls. Beside sphingolipids free fatty acids, lysophosphatidylcholines and triglycerides changed significantly in the blood of colitis patients dependent on the disease severity. Our data indicate that detraction of the sphingolipid de novo synthesis in colon tissue might be an important trigger for UC. Several lipids changed significantly in the blood, which might be used as biomarkers for disease control; however, diet-related variabilities need to be considered.
R-flurbiprofen is the non-COX-inhibiting enantiomer of flurbiprofen and is not converted to S-flurbiprofen in human cells. Nevertheless, it reduces extracellular prostaglandin E2 (PGE2) in cancer or immune cell cultures and human extracellular fluid. Here, we show that R-flurbiprofen acts through a dual mechanism: (i) it inhibits the translocation of cPLA2α to the plasma membrane and thereby curtails the availability of arachidonic acid and (ii) R-flurbiprofen traps PGE2 inside of the cells by inhibiting multidrug resistance–associated protein 4 (MRP4, ABCC4), which acts as an outward transporter for prostaglandins. Consequently, the effects of R-flurbiprofen were mimicked by RNAi-mediated knockdown of MRP4. Our data show a novel mechanism by which R-flurbiprofen reduces extracellular PGs at physiological concentrations, particularly in cancers with high levels of MRP4, but the mechanism may also contribute to its anti-inflammatory and immune-modulating properties and suggests that it reduces PGs in a site- and context-dependent manner.
The UDP-glucose ceramide glycosyltransferase (UGCG) is a key enzyme in the sphingolipid metabolism by generating glucosylceramide (GlcCer), the precursor for all glycosphingolipids (GSL), which are essential for proper cell function. Interestingly, the UGCG is also overexpressed in several cancer types and correlates with multidrug resistance protein 1 (MDR1) gene expression. This membrane protein is responsible for efflux of toxic substances and protects cancer cells from cell damage through chemotherapeutic agents. Studies showed a connection between UGCG and MDR1 overexpression and multidrug resistance development, but the precise underlying mechanisms are unknown. Here, we give an overview about the UGCG and its connection to MDR1 in multidrug resistant cells. Furthermore, we focus on UGCG transcriptional regulation, the impact of UGCG on cellular signaling pathways and the effect of UGCG and MDR1 on the lipid composition of membranes and how this could influence multidrug resistance development. To our knowledge, this is the first review presenting an overview about UGCG with focus on the relationship to MDR1 in the process of multidrug resistance development.
5-Lipoxygenase (5-LO) is the key enzyme in the formation of pro-inflammatory leukotrienes (LT) which play an important role in a number of inflammatory diseases. Accordingly, 5-LO inhibitors are frequently used to study the role of 5-LO and LT in models of inflammation and cancer. Interestingly, the therapeutic efficacy of these inhibitors is highly variable. Here we show that the frequently used 5-LO inhibitors AA-861, BWA4C, C06, CJ-13,610 and the FDA approved compound zileuton as well as the pan-LO inhibitor nordihydroguaiaretic acid interfere with prostaglandin E2 (PGE2) release into the supernatants of cytokine-stimulated (TNFα/IL-1β) HeLa cervix carcinoma, A549 lung cancer as well as HCA-7 colon carcinoma cells with similar potencies compared to their LT inhibitory activities (IC50 values ranging from 0.1–9.1 µM). In addition, AA-861, BWA4C, CJ-13,610 and zileuton concentration-dependently inhibited bacterial lipopolysaccharide triggered prostaglandin (PG) release into human whole blood. Western Blot analysis revealed that inhibition of expression of enzymes involved in PG synthesis was not part of the underlying mechanism. Also, liberation of arachidonic acid which is the substrate for PG synthesis as well as PGH2 and PGE2 formation were not impaired by the compounds. However, accumulation of intracellular PGE2 was found in the inhibitor treated HeLa cells suggesting inhibition of PG export as major mechanism. Further, experiments showed that the PG exporter ATP-binding cassette transporter multidrug resistance protein 4 (MRP-4) is targeted by the inhibitors and may be involved in the 5-LO inhibitor-mediated PGE2 inhibition. In conclusion, the pharmacological effects of a number of 5-LO inhibitors are compound-specific and involve the potent inhibition of PGE2 export. Results from experimental models on the role of 5-LO in inflammation and pain using 5-LO inhibitors may be misleading and their use as pharmacological tools in experimental models has to be revisited. In addition, 5-LO inhibitors may serve as new scaffolds for the development of potent prostaglandin export inhibitors.
Sphingosine 1 phosphate (S1P) lyase (Sgpl1) catalyses the irreversible cleavage of S1P and thereby the last step of sphingolipid degradation. Loss of Sgpl1 in humans and mice leads to accumulation of sphingolipids and multiple organ injuries. Here, we addressed the role of hepatocyte Sgpl1 for regulation of sphingolipid homoeostasis by generating mice with hepatocyte-specific deletion of Sgpl1 (Sgpl1HepKO mice). Sgpl1HepKO mice had normal body weight, liver weight, liver structure and liver enzymes both at the age of 8 weeks and 8 months. S1P, sphingosine and ceramides, but not glucosylceramides or sphingomyelin, were elevated by ~1.5–2-fold in liver, and this phenotype did not progress with age. Several ceramides were elevated in plasma, while plasma S1P was normal. Interestingly, S1P and glucosylceramides, but not ceramides, were elevated in bile of Sgpl1HepKO mice. Furthermore, liver cholesterol was elevated, while LDL cholesterol decreased in 8-month-old mice. In agreement, the LDL receptor was upregulated, suggesting enhanced uptake of LDL cholesterol. Expression of peroxisome proliferator-activated receptor-γ, liver X receptor and fatty acid synthase was unaltered. These data show that mouse hepatocytes largely compensate the loss of Sgpl1 by secretion of accumulating sphingolipids in a specific manner into blood and bile, so that they can be excreted or degraded elsewhere.
Prostaglandin E2 (PGE2) favors multiple aspects of tumor development and immune evasion. Therefore, microsomal prostaglandin E synthase (mPGES-1/-2), is a potential target for cancer therapy. We explored whether inhibiting mPGES-1 in human and mouse models of breast cancer affects tumor-associated immunity. A new model of breast tumor spheroid killing by human PBMCs was developed. In this model, tumor killing required CD80 expression by tumor-associated phagocytes to trigger cytotoxic T cell activation. Pharmacological mPGES-1 inhibition increased CD80 expression, whereas addition of PGE2, a prostaglandin E2 receptor 2 (EP2) agonist, or activation of signaling downstream of EP2 reduced CD80 expression. Genetic ablation of mPGES-1 resulted in markedly reduced tumor growth in PyMT mice. Macrophages of mPGES-1-/- PyMT mice indeed expressed elevated levels of CD80 compared to their wildtype counterparts. CD80 expression in tumor-spheroid infiltrating mPGES-1-/- macrophages translated into antigen-specific cytotoxic T cell activation. In conclusion, mPGES-1 inhibition elevates CD80 expression by tumor-associated phagocytes to restrict tumor growth. We propose that mPGES-1 inhibition in combination with immune cell activation might be part of a therapeutic strategy to overcome the immunosuppressive tumor microenvironment.