Refine
Document Type
- Article (4)
- Doctoral Thesis (1)
Has Fulltext
- yes (5)
Is part of the Bibliography
- no (5)
Keywords
- NR4A2 (2)
- Alzheimer’s disease (1)
- Chemical tools (1)
- Drug screening (1)
- MODY (1)
- Medicinal chemistry (1)
- Orphan nuclear receptor (1)
- Parkinson’s disease (1)
- drug discovery (1)
- fragment-based design (1)
Institute
- Biochemie, Chemie und Pharmazie (4)
- Medizin (1)
- Pharmazie (1)
Hepatocyte nuclear factor 4α (HNF4α) is a ligand-sensing transcription factor and presents as a potential drug target in metabolic diseases and cancer. In humans, mutations in the HNF4α gene cause maturity-onset diabetes of the young (MODY), and the elevated activity of this protein has been associated with gastrointestinal cancers. Despite the high therapeutic potential, available ligands and structure–activity relationship knowledge for this nuclear receptor are scarce. Here, we disclose a chemically diverse collection of orthogonally validated fragment-like activators as well as inverse agonists, which modulate HNF4α activity in a low micromolar range. These compounds demonstrate the druggability of HNF4α and thus provide a starting point for medicinal chemistry as well as an early tool for chemogenomics.
Several lines of evidence suggest the ligand-sensing transcription factor Nurr1 as a promising target to treat neurodegenerative diseases. Nurr1 modulators to validate and exploit this therapeutic potential are rare, however. To identify novel Nurr1 agonist chemotypes, we have employed the Nurr1 activator amodiaquine as template for microscale analogue library synthesis. The first set of analogues was based on the 7-chloroquiolin-4-amine core fragment of amodiaquine and revealed superior N-substituents compared to diethylaminomethylphenol contained in the template. A second library of analogues was subsequently prepared to replace the chloroquinolineamine scaffold. The two sets of analogues enabled a full scaffold hop from amodiaquine to a novel Nurr1 agonist sharing no structural features with the lead but comprising superior potency on Nurr1. Additionally, pharmacophore modeling based on the entire set of active and inactive analogues suggested key features for Nurr1 agonists.
Nuclear receptor related 1 (Nurr1) is an orphan ligand-activated transcription factor and considered as neuroprotective transcriptional regulator with great potential as therapeutic target for neurodegenerative diseases. However, the collection of available Nurr1 modulators and mechanistic understanding of Nurr1 are limited. Here, we report the discovery of several structurally diverse non-steroidal anti-inflammatory drugs as inverse Nurr1 agonists demonstrating that Nurr1 activity can be regulated bidirectionally. As chemical tools, these ligands enable unraveling the co-regulatory network of Nurr1 and the mode of action distinguishing agonists from inverse agonists. In addition to its ability to dimerize, we observe an ability of Nurr1 to recruit several canonical nuclear receptor co-regulators in a ligand-dependent fashion. Distinct dimerization states and co-regulator interaction patterns arise as discriminating factors of Nurr1 agonists and inverse agonists. Our results contribute a valuable collection of Nurr1 modulators and relevant mechanistic insights for future Nurr1 target validation and drug discovery.
The ligand-sensing transcription factor Nurr1 emerges as a promising therapeutic target for neurodegenerative pathologies but Nurr1 ligands for functional studies and therapeutic validation are lacking. Here pronounced Nurr1 modulation by statins for which clinically relevant neuroprotective effects are demonstrated, is reported. Several statins directly affect Nurr1 activity in cellular and cell-free settings with low micromolar to sub-micromolar potencies. Simvastatin as example exhibits anti-inflammatory effects in astrocytes, which are abrogated by Nurr1 knockdown. Differential gene expression analysis in native and Nurr1-silenced cells reveals strong proinflammatory effects of Nurr1 knockdown while simvastatin treatment induces several neuroprotective mechanisms via Nurr1 involving changes in inflammatory, metabolic and cell cycle gene expression. Further in vitro evaluation confirms reduced inflammatory response, improved glucose metabolism, and cell cycle inhibition of simvastatin-treated neuronal cells. These findings suggest Nurr1 involvement in the well-documented but mechanistically elusive neuroprotection by statins.
Nukleäre Rezeptoren (NRs) sind ligandenaktivierte Transkriptionsfaktoren, die an der Regulation unzähliger (patho-)physiologischer Prozesse im Körper beteiligt sind, wodurch sie interessante therapeutische Zielstrukturen darstellen. Unter ihnen zählen die PPARs (α, γ und δ) zur Hälfte der gut erforschten NRs. Sie haben als Lipidsensoren vor allem metabolische Funktionen und ihre synthetischen Liganden sind als Arzneistoffe zugelassen, sind anderen Therapieoptionen jedoch aufgrund geringerer Wirksamkeit und klassenspezifischer Nebenwirkungen unterlegen. Daher ist der Bedarf an neuen Konzepten zur selektiven Modulation der PPARs groß. Den gut studierten NRs gegenüber steht die andere Hälfte der NRs, deren Funktionen noch nicht umfassend verstanden sind. Nurr1 ist ein solcher NR, dem großes therapeutisches Potential bei neurodegenerativen Erkrankungen wie Parkinson, Alzheimer-Demenz und Multipler Sklerose zugeschrieben wird. Der konstitutiv aktive NR wird hauptsächlich im ZNS, und dort vor allem in dopaminergen Neuronen, exprimiert, wo er neuroprotektive und anti-entzündliche Effekte vermittelt. Trotz der jüngsten Erkenntnisse zu potenziellen endogenen Liganden der direkten Interaktion der Nurr1-Ligandbindedomäne (LBD) mit kleinen, wirkstoffartigen Molekülen, mangelt es an geeigneten chemischen Tools, um die Nurr1-Modulation als neues therapeutisches Konzept zu validieren. Ziel dieser Arbeit war daher die Identifikation, Entwicklung und Charakterisierung neuer tool compounds für die PPARs und Nurr1.
Das Konzept der Photopharmakologie eröffnet neue Möglichkeiten in der zeitlichen und räumlichen Kontrolle biologischer Effekte. Mit Hilfe computergestützten Designs wurden aus dem PPARγ-Agonist Rosiglitazon und dem pan-PPAR-Agonist GL479 Azobenzen-basierte photoschaltbare PPAR-Agonisten entwickelt und optimiert. Das Rosiglitazon-Azolog 36 wurde durch terminale Erweiterung als cis-präferenzieller selektiver PPARγ-Agonist erhalten, der durch Licht aktiviert werden konnte. Aus GL479 ging zum einen 38 als hochpotenter und selektiver PPARα-Agonist hervor, der in seiner trans-Konfiguration 35-mal potenter war als das entsprechende cis-Isomer. Zum anderen wurde ein dualer trans-präferenzieller PPARα- und -δ-Agonist (41) entwickelt. In einem eigens etablierten Fluoreszenz-Reportergenassay konnte durch die neuen photopharmakologischen Tools die PPAR-Aktivität in lebenden Zellen im zeitlichen Verlauf kontrolliert werden.
Auch die Identifikation und Charakterisierung endogener Liganden ist von großer Relevanz für die Modulation von NRs. Mit der Entdeckung der PPARγ-Aktivierung durch Garcinolsäure (48), einem Vitamin-E-Metaboliten, konnte ein neuer Aktivierungsmechanismus aufgedeckt werden, der ein besonderes Co-Regulator-Interaktionsprofil umfasst. Eine Co-Kristallstruktur der PPARγ-LBD im Komplex mit 48 zeigte, dass 48 sowohl die orthosterische als auch eine neue allosterische Bindestelle adressiert. Eine Genexpressionsanalyse in humanen Hepatozyten zeigte, dass sich dieser besondere Aktivierungsmechanismus von 48 auch in einer differenzierten Modulation der PPARγ-regulierten Genexpression widerspiegelte, woraus sich mögliche therapeutische Anwendungen für eine selektiv allosterische PPAR-Modulation ableiten lassen.
Der erste Ansatz zur Suche nach Nurr1-Modulatoren als tool compounds war von den Prostaglandinen A1 und A2 als potenziellen endogenen Nurr1-Liganden inspiriert. Da diese Entzündungsmediatoren durch Aktivität der Cyclooxygenasen (COX) 1 und 2 entstehen, entstand die Hypothese, dass synthetische COX-Inhibitoren, auch bekannt als nichtsteroidale Antirheumatika (NSARs), Nurr1 modulieren könnten. Dies konnte in einem Screening von 39 strukturell diversen NSARs im Gal4-Nurr1-Reportergenassay bestätigt werden. Mit Meclofenaminsäure als differenziellem Nurr1-Modulator sowie Oxaprozin und Parecoxib als den ersten inversen Nurr1-Agonisten konnte dabei außerdem gezeigt werden, dass die hohe konstitutive Nurr1-Aktivität bidirektional moduliert werden kann, und dass sowohl das Co-Regulator-Rekrutierungsprofil als auch das Dimerisierungsverhalten an der Vermittlung von Nurr1-Ligand-Effekten entscheidend beteiligt sind.
Die zweite Strategie beruhte auf den alten Antimalariawirkstoffen Amodiaquin (19) und Chloroquin (25), die zuvor als moderate Nurr1-Agonisten (EC50 Nurr1: 36 µM (19), 47 µM (25)) identifiziert wurden, aber aufgrund zahlreicher unspezifischer Effekte für den breiten Einsatz als tool compounds für Nurr1 ungeeignet sind. Eine Evaluation der einzelnen Strukturmerkmale dieses Chemotyps zeigte, dass das gemeinsame 7-Chlorochinolin-4-amin Grundgerüst ausreichend ist, um Nurr1 zu aktivieren (EC50 Nurr1: 259 µM). Basierend auf dieser Erkenntnis gingen durch gezielte Strukturmodifikationen dieses Grundgerüstes die Nurr1-Agonisten 71 und 73 hervor (EC50 Nurr1: 7,3 µM (71), 17 µM (73)), die die Leitstrukturen in ihrer Potenz übertrafen...