Refine
Language
- English (5)
Has Fulltext
- yes (5)
Is part of the Bibliography
- no (5)
Keywords
- 26 LncRNA (1)
- Fendrr (1)
- LncRNA (1)
- Nkx2-5 (1)
- Wnt (1)
- fibroblasts (1)
- hypertrophy (1)
- lung development (1)
- trans (1)
- triplex (1)
Institute
- Georg-Speyer-Haus (5)
- Medizin (5)
- Biochemie und Chemie (1)
Fendrr synergizes with Wnt signalling to regulate fibrosis related genes during lung development
(2021)
Long non-coding RNAs are a very versatile class of molecules that can have important roles in regulating a cells function, including regulating other genes on the transcriptional level. One of these mechanisms is that RNA can directly interact with DNA thereby recruiting additional components such as proteins to these sites via a RNA:dsDNA triplex formation. We genetically deleted the triplex forming sequence (FendrrBox) from the lncRNA Fendrr in mice and find that this FendrrBox is partially required for Fendrr function in vivo. We find that the loss of the triplex forming site in developing lungs causes a dysregulation of gene programs, associated with lung fibrosis. A set of these genes contain a triplex site directly at their promoter and are expressed in fibroblasts. We find that Fendrr with the Wnt signaling pathway regulates these genes, implicating that Fendrr synergizes with Wnt signaling in lung fibrosis.
After myocardial infarction in the adult heart the remaining, non-infarcted tissue adapts to compensate the loss of functional tissue. This adaptation requires changes in gene expression networks, which are mostly controlled by transcription regulating proteins. Long non-coding transcripts (lncRNAs) are taking part in fine-tuning such gene programs. We describe and characterize the cardiomyocyte specific lncRNA Sweetheart RNA (Swhtr), an approximately 10 kb long transcript divergently expressed from the cardiac core transcription factor coding gene Nkx2-5. We show that Swhtr is dispensable for normal heart development and function but becomes essential for the tissue adaptation process after myocardial infarction in murine males. Re-expressing Swhtr from an exogenous locus rescues the Swhtr null phenotype. Genes that depend on Swhtr after cardiac stress are significantly occupied and therefore most likely regulated by NKX2-5. The Swhtr transcript interacts with NKX2-5 and disperses upon hypoxic stress in cardiomyocytes, indicating an auxiliary role of Swhtr for NKX2-5 function in tissue adaptation after myocardial injury.
Long non-coding RNAs are a very versatile class of molecules that can have important roles in regulating a cells function, including regulating other genes on the transcriptional level. One of these mechanisms is that RNA can directly interact with DNA thereby recruiting additional components such as proteins to these sites via a RNA:dsDNA triplex formation. We genetically deleted the triplex forming sequence (FendrrBox) from the lncRNA Fendrr in mice and find that this FendrrBox is partially required for Fendrr function in vivo. We find that the loss of the triplex forming site in developing lungs causes a dysregulation of gene programs, associated with lung fibrosis. A set of these genes contain a triplex site directly at their promoter and are expressed in fibroblasts. We confirm the formation of RNA:dsDNA formation with target promoters. We find that Fendrr with the Wnt signalling pathway regulates these genes, implicating that Fendrr synergizes with Wnt signalling in lung fibrosis.
Long non-coding RNAs are a very versatile class of molecules that can have important roles in regulating a cells function, including regulating other genes on the transcriptional level. One of these mechanisms is that RNA can directly interact with DNA thereby recruiting additional components such as proteins to these sites via an RNA:dsDNA triplex formation. We genetically deleted the triplex forming sequence (FendrrBox) from the lncRNA Fendrr in mice and found that this FendrrBox is partially required for Fendrr function in vivo. We found that the loss of the triplex forming site in developing lungs causes a dysregulation of gene programs associated with lung fibrosis. A set of these genes contain a triplex site directly at their promoter and are expressed in lung fibroblasts. We biophysically confirmed the formation of an RNA:dsDNA triplex with target promoters in vitro. We found that Fendrr with the Wnt signalling pathway regulates these genes, implicating that Fendrr synergizes with Wnt signalling in lung fibrosis.
After myocardial infarction in the adult heart the remaining, non-infarcted tissue adapts to compensate the loss of functional tissue. This adaptation requires changes in gene expression networks, which are mostly controlled by transcription regulating proteins. Long non-coding transcripts (lncRNAs) are now recognized for taking part in fine-tuning such gene programs. We identified and characterized the cardiomyocyte specific lncRNA Sweetheart RNA (Swhtr), an approximately 10 kb long transcript divergently expressed from the cardiac core transcription factor coding gene Nkx2-5. We show that Swhtr is dispensable for normal heart development and function, but becomes essential for the tissue adaptation process after myocardial infarction. Re-expressing Swhtr from an exogenous locus rescues the Swhtr null phenotype. Genes depending on Swhtr after cardiac stress are significantly occupied, and therefore most likely regulated by NKX2-5. Our results indicate a synergistic role for Swhtr and the developmentally essential transcription factor NKX2-5 in tissue adaptation after myocardial injury.