Refine
Document Type
- Preprint (2)
Language
- English (2)
Has Fulltext
- yes (2)
Is part of the Bibliography
- no (2)
Institute
- Physik (2)
We show that an unambiguous way of determining the universal limiting fragmentation region is to consider the derivative (d 2 n / d eta 2) of the pseudo-rapidity distribution per participant pair. In addition, we find that the transition region between the fragmentation and the central plateau regions exhibits a second kind of universal behavior that is only apparent in d 2 n / d eta 2. The sqrt s dependence of the height of the central plateau (d n / d eta) eta=0 and the total charged particle multiplicity n total critically depend on the behavior of this universal transition curve. Analyzing available RHIC data, we show that (dn/d eta) eta=0 can be bounded by ln 2 s and n total can be bounded by ln 3 s. We also show that the deuteron-gold data from RHIC has the exactly same features as the gold-gold data indicating that these universal behaviors are a feature of the initial state parton-nucleus interactions and not a consequence of final state interactions. Predictions for LHC energy are also given.
In this study, we analyze the recently proposed charge transfer fluctuations within a finite pseudo-rapidity space. As the charge transfer fluctuation is a measure of the local charge correlation length, it is capable of detecting inhomogeneity in the hot and dense matter created by heavy ion collisions. We predict that going from peripheral to central collisions, the charge transfer fluctuations at midrapidity should decrease substantially while the charge transfer fluctuations at the edges of the observation window should decrease by a small amount. These are consequences of having a strongly inhomogeneous matter where the QGP component is concentrated around midrapidity. We also show how to constrain the values of the charge correlations lengths in both the hadronic phase and the QGP phase using the charge transfer fluctuations.